Os detectores de semicondutores à base de silício são usados principalmente para detectores de partículas carregadas (especialmente para rastrear partículas carregadas ) e detectores de raios-X moles, enquanto o germânio é amplamente usado para espectroscopia de raios gama. Um semicondutor grande, limpo e quase perfeito é ideal como um contador para a radioatividade . No entanto, é difícil produzir cristais grandes com pureza suficiente. Os detectores de semicondutores têm, portanto, baixa eficiência, mas fornecem uma medida muito precisa da energia. Os detectores baseados em silício têm ruído suficientemente baixo, mesmo em temperatura ambiente. Isso é causado pelo gap de banda larga de silício (Egap = 1,12 eV), que nos permite operar o detector à temperatura ambiente, mas é preferível o resfriamento para reduzir o ruído. A desvantagem é que os detectores de silício são muito mais caros que as câmaras de nuvem ou de arame e requerem um arrefecimento sofisticado para reduzir as correntes de fuga (ruído). Eles também sofrem degradação ao longo do tempo devido à radiação, no entanto, isso pode ser bastante reduzido graças ao efeito Lázaro.
Princípio de operação dos detectores de silício
A operação dos detectores de semicondutores é resumida nos seguintes pontos:
- A radiação ionizante entra no volume sensível do detector e interage com o material semicondutor.
- As partículas que passam pelo detector ionizam os átomos do semicondutor, produzindo os pares elétron-buraco . O número de pares elétron-buraco é proporcional à energia da radiação para o semicondutor. Como resultado, um número de elétrons é transferido da banda de valência para a banda de condução e um número igual de orifícios é criado na banda de valência.
- Sob a influência de um campo elétrico, elétrons e buracos viajam para os eletrodos, onde resultam em um pulso que pode ser medido em um circuito externo,
- Esse pulso carrega informações sobre a energia da radiação incidente original. O número desses pulsos por unidade de tempo também fornece informações sobre a intensidade da radiação.
A energia necessária para produzir pares de elétrons-buraco é muito baixa em comparação com a energia necessária para produzir íons emparelhados em um detector de ionização gasosa . Nos detectores de semicondutores, a variação estatística da altura do pulso é menor e a resolução da energia é maior. Como os elétrons viajam rápido, a resolução do tempo também é muito boa. Comparado aos detectores de ionização gasosa, a densidade de um detector de semicondutor é muito alta e partículas carregadas de alta energia podem liberar sua energia em um semicondutor de dimensões relativamente pequenas.
Aplicação de detectores de silício
Como os detectores à base de silício são muito bons para rastrear partículas carregadas, eles constituem uma parte substancial do sistema de detecção no LHC no CERN. A maioria dos detectores de partículas de silício trabalha, em princípio, dopando tiras estreitas (geralmente com cerca de 100 micrômetros de largura) de silício para transformá-las em diodos, que são então polarizados inversamente. À medida que as partículas carregadas passam por essas tiras, elas causam pequenas correntes de ionização que podem ser detectadas e medidas. Organizar milhares desses detectores em torno de um ponto de colisão em um acelerador de partículas pode fornecer uma imagem precisa de quais caminhos as partículas seguem. Por exemplo, o Sistema de rastreamento interno (ITS) de uma experiência de colisor de íons grandes (ALICE) contém três camadas de detectores baseados em silício:
- Detector de pixels de silicone (SPD)
- Detector de deriva de silício (SDD)
- Detector de tira de silicone (SSD)
Detectores de tira de silicone
Os detectores à base de silício são muito bons para rastrear partículas carregadas. Um detector de tira de silício é um arranjo de implantes em forma de tira que atuam como eletrodos coletores de carga.
Os detectores de fita de silicone com área de 5 x 5 cm 2 são bastante comuns e são usados em série (assim como os aviões de MWPCs)) para determinar as trajetórias de partículas carregadas com precisão de posição da ordem de vários μm na direção transversal. Colocados em uma bolacha de silício com baixa dopagem e totalmente empobrecida, esses implantes formam uma matriz unidimensional de diodos. Ao conectar cada uma das tiras metalizadas a um amplificador sensível à carga, é construído um detector sensível à posição. É possível obter medições de posição bidimensionais aplicando uma faixa adicional como doping na parte traseira da bolacha, usando uma tecnologia de dupla face. Esses dispositivos podem ser usados para medir pequenos parâmetros de impacto e, assim, determinar se alguma partícula carregada se originou de uma colisão primária ou foi o produto de decomposição de uma partícula primária que percorreu uma pequena distância da interação original e depois se deteriorou.
Os detectores de fita de silício constituem uma parte substancial do sistema de detecção no LHC no CERN. A maioria dos detectores de partículas de silício trabalha, em princípio, dopando tiras estreitas (geralmente com cerca de 100 micrômetros de largura) de silício para transformá-las em diodos, que são então polarizados inversamente. À medida que as partículas carregadas passam por essas tiras, elas causam pequenas correntes de ionização que podem ser detectadas e medidas. Organizar milhares desses detectores em torno de um ponto de colisão em um acelerador de partículas pode fornecer uma imagem precisa de quais caminhos as partículas seguem.
Por exemplo, o Sistema de rastreamento interno (ITS) de uma experiência de colisor de íons grandes (ALICE) contém três camadas de detectores baseados em silício:
- Detector de pixels de silicone (SPD)
- Detector de deriva de silício (SDD)
- Detector de tira de silicone (SSD)
Delta E – E Detector – Telescópio
Na física experimental, os detectores ΔE-E , conhecidos como telescópios , são dispositivos poderosos para identificação de partículas carregadas . Para fornecer identificação de partículas carregadas, telescópios que consistem em pares de detectores de barreira de superfície finos e espessos podem ser usados. Esses detectores devem ser posicionados em série. A velocidade é deduzida da potência de parada medida nos detectores finos ( detectores ΔE ). Existe uma forte correlação entre a energia depositada em cada detector. Essa correlação depende da massa (A), da carga (Z) e da energia cinética (E) de cada partícula. A massa é deduzida da faixa ou da perda de energia cinética total no detector mais espesso (Detector E ).
Os telescópios podem ser compostos por vários detectores ( câmaras de ionização , detectores de silício e cintiladores, por exemplo) empilhados para desacelerar as partículas carregadas, o primeiro sendo o mais fino e o último o mais espesso. Os contadores de cintilação CsI podem ser, por exemplo, usados como contadores E finais. Como um exemplo de telescópio, um conjunto baseado em dois detectores de silício ΔE dianteiros (10 ou 30 µm) e um contador de silício E com 1500 µm de espessura pode ser usado para a detecção de partículas carregadas de alta energia.
……………………………………………………………………………………………………………………………….
Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.