Facebook Instagram Youtube Twitter

O que é o princípio de operação de detectores de semicondutores – Definição

Este artigo resume o princípio de operação dos detectores de semicondutores. A radiação ionizante entra no volume sensível do detector e interage com o material semicondutor. Dosimetria de Radiação
detector de tiras de silicone - semicondutores
Detector de tira de silício Fonte: micronsemiconductor.co.uk

Um detector de semicondutores é um detector de radiação que é baseado em um semicondutor , como silício ou germânio, para medir o efeito de partículas ou fótons carregados incidentes. Em geral, os semicondutores são materiais, inorgânicos ou orgânicos, que têm a capacidade de controlar sua condução, dependendo da estrutura química, temperatura, iluminação e presença de dopantes. O nome semicondutor vem do fato de que esses materiais têm uma condutividade elétrica entre a de um metal, como cobre, ouro, etc. e um isolador, como o vidro. Eles têm um gap de energia menor que 4eV (cerca de 1eV). Na física do estado sólido, esse gap de energia ou gap de banda é uma faixa de energia entrebanda de valência e banda de condução onde os estados de elétrons são proibidos. Ao contrário dos condutores, os elétrons em um semicondutor devem obter energia (por exemplo, a partir de radiação ionizante ) para atravessar a folga da banda e alcançar a banda de condução.

Princípio de operação de detectores de semicondutores  

A operação dos detectores de semicondutores é resumida nos seguintes pontos:

  • A radiação ionizante entra no volume sensível do detector e interage com o material semicondutor.
  • As partículas que passam pelo detector ionizam os átomos do semicondutor, produzindo os pares elétron-buraco . O número de pares elétron-buraco é proporcional à energia da radiação para o semicondutor. Como resultado, um número de elétrons é transferido da banda de valência para a banda de condução e um número igual de orifícios é criado na banda de valência.
  • Sob a influência de um campo elétrico, elétrons e buracos viajam para os eletrodos, onde resultam em um pulso que pode ser medido em um circuito externo,
  • Esse pulso carrega informações sobre a energia da radiação incidente original. O número desses pulsos por unidade de tempo também fornece informações sobre a intensidade da radiação.

A energia necessária para produzir pares de elétrons-buraco é muito baixa em comparação com a energia necessária para produzir íons emparelhados em um detector de ionização gasosa . Nos detectores de semicondutores, a variação estatística da altura do pulso é menor e a resolução da energia é maior. Como os elétrons viajam rápido, a resolução do tempo também é muito boa. Comparado aos detectores de ionização gasosa, a densidade de um detector de semicondutor é muito alta e partículas carregadas de alta energia podem liberar sua energia em um semicondutor de dimensões relativamente pequenas.

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.