¿Qué es el detector de semiconductores a base de silicio? Definición

Los detectores de semiconductores a base de silicio se utilizan principalmente para detectores de partículas cargadas (especialmente para rastrear partículas cargadas) y detectores de rayos X blandos. Dosimetría de radiación
detector de tiras de silicio - semiconductores
Detector de tiras de silicona Fuente: micronsemiconductor.co.uk

Los detectores de semiconductores a base de silicio se usan principalmente para detectores de partículas cargadas (especialmente para rastrear partículas cargadas ) y detectores de rayos X blandos, mientras que el germanio se usa ampliamente para la espectroscopía de rayos gamma. Un semiconductor grande, limpio y casi perfecto es ideal como contador de radiactividad . Sin embargo, es difícil hacer cristales grandes con suficiente pureza. Los detectores de semiconductores tienen, por lo tanto, baja eficiencia, pero dan una medida muy precisa de la energía. Los detectores basados ​​en silicio tienen un ruido suficientemente bajo incluso a temperatura ambiente. Esto es causado por la gran brecha de bandade silicio (Egap = 1.12 eV), que nos permite operar el detector a temperatura ambiente, pero se prefiere enfriar para reducir el ruido. El inconveniente es que los detectores de silicio son mucho más caros que las cámaras de nubes o cámaras de cables y requieren un enfriamiento sofisticado para reducir las corrientes de fuga (ruido). También sufren degradación con el tiempo debido a la radiación, sin embargo, esto se puede reducir en gran medida gracias al efecto Lázaro.

Principio de funcionamiento de detectores de silicio

El funcionamiento de los detectores de semiconductores se resume en los siguientes puntos:

  • La radiación ionizante ingresa al volumen sensible del detector e interactúa con el material semiconductor.
  • La partícula que pasa a través del detector ioniza los átomos del semiconductor, produciendo los pares de electrones . El número de pares de electrones es proporcional a la energía de la radiación al semiconductor. Como resultado, se transfieren varios electrones desde la banda de valencia a la banda de conducción, y se crea un número igual de agujeros en la banda de valencia.
  • Bajo la influencia de un campo eléctrico, los electrones y los agujeros viajan a los electrodos, donde producen un pulso que se puede medir en un circuito externo,
  • Este pulso lleva información sobre la energía de la radiación incidente original. El número de tales pulsos por unidad de tiempo también proporciona información sobre la intensidad de la radiación.

La energía requerida para producir pares de electrones es muy baja en comparación con la energía requerida para producir iones emparejados en un detector de ionización gaseosa . En los detectores de semiconductores, la variación estadística de la altura del pulso es menor y la resolución de la energía es mayor. Como los electrones viajan rápido, la resolución de tiempo también es muy buena. En comparación con los detectores de ionización gaseosa, la densidad de un detector de semiconductores es muy alta, y las partículas cargadas de alta energía pueden emitir su energía en un semiconductor de dimensiones relativamente pequeñas.

 

Aplicación de detectores de silicio

Dado que los detectores basados ​​en silicio son muy buenos para rastrear partículas cargadas, constituyen una parte sustancial del sistema de detección en el LHC en el CERN. La mayoría de los detectores de partículas de silicio funcionan, en principio, dopando tiras de silicio estrechas (generalmente de alrededor de 100 micrómetros de ancho) para convertirlas en diodos, que luego se polarizan inversamente. A medida que las partículas cargadas pasan a través de estas tiras, causan pequeñas corrientes de ionización que se pueden detectar y medir. Organizar miles de estos detectores alrededor de un punto de colisión en un acelerador de partículas puede proporcionar una imagen precisa de los caminos que toman las partículas. Por ejemplo, el Sistema de seguimiento interno (ITS) de un gran experimento de colisionador de iones (ALICE) contiene tres capas de detectores basados ​​en silicio:

  • Detector de píxeles de silicio (SPD)
  • Detector de deriva de silicio (SDD)
  • Detector de tiras de silicio (SSD)

Detectores de tiras de silicio

Los detectores a base de silicio son muy buenos para rastrear partículas cargadas. Un detector de tiras de silicio es una disposición de implantes en forma de tiras que actúan como electrodos de recogida de carga.

Los detectores de tiras de silicio de 5 x 5 cm 2 de área son bastante comunes y se usan en serie (al igual que los planos de MWPC)) para determinar las trayectorias de partículas cargadas a precisiones de posición del orden de varios μm en la dirección transversal. Colocados en una oblea de silicio completamente empobrecida y dopada, estos implantes forman una matriz unidimensional de diodos. Al conectar cada una de las tiras metalizadas a un amplificador sensible a la carga, se construye un detector sensible a la posición. Se pueden lograr mediciones de posición bidimensionales aplicando una tira adicional como dopaje en la parte posterior de la oblea mediante el uso de una tecnología de doble cara. Dichos dispositivos se pueden usar para medir pequeños parámetros de impacto y, por lo tanto, determinar si alguna partícula cargada se originó a partir de una colisión primaria o si fue el producto de descomposición de una partícula primaria que viajó una pequeña distancia desde la interacción original y luego se descompuso.

Los detectores de tiras de silicio constituyen una parte sustancial del sistema de detección en el LHC en el CERN. La mayoría de los detectores de partículas de silicio funcionan, en principio, al dopar tiras de silicio estrechas (generalmente de alrededor de 100 micrómetros de ancho) para convertirlas en diodos, que luego se polarizan inversamente. A medida que las partículas cargadas pasan a través de estas tiras, causan pequeñas corrientes de ionización que se pueden detectar y medir. Organizar miles de estos detectores alrededor de un punto de colisión en un acelerador de partículas puede proporcionar una imagen precisa de los caminos que toman las partículas.

Por ejemplo, el Sistema de seguimiento interno (ITS) de un gran experimento de colisionador de iones (ALICE) contiene tres capas de detectores basados ​​en silicio:

  • Detector de píxeles de silicio (SPD)
  • Detector de deriva de silicio (SDD)
  • Detector de tiras de silicio (SSD)

Delta E – Detector E – Telescopio

delta E - Telescopio E - gráfico
Ejemplo de histograma del detector ΔE-E. Cada curva tipo hipérbola representa una partícula diferente en el haz.

En física experimental, los detectores ΔE-E , conocidos como telescopios , son dispositivos potentes para la identificación de partículas cargadas . Para proporcionar una identificación de partículas cargadas, se pueden utilizar telescopios que consisten en pares de detectores de barrera de superficie delgada y gruesa . Estos detectores deben colocarse en serie. La velocidad se deduce de la potencia de frenado medida en los detectores delgados ( detectores ΔE ). Existe una fuerte correlación entre la energía depositada en cada detector. Esta correlación depende de la masa (A), la carga (Z) y la energía cinética (E) de cada partícula. La masa se deduce del rango o de la pérdida total de energía cinética en el detector más grueso (E detector ).

Los telescopios pueden estar compuestos por varios detectores ( cámaras de ionización , detectores de silicio y centelleadores, por ejemplo) apilados para ralentizar las partículas cargadas incidentes, siendo el primer detector el más delgado y el último el más grueso. Los contadores de centelleo CsI pueden usarse, por ejemplo, como contadores E finales. Como ejemplo de telescopio, se puede usar un conjunto basado en dos detectores de silicio ΔE frontales (10 o 30 µm) y un contador de silicio E de 1500 µm de espesor para la detección de partículas cargadas de alta energía.

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.