O que é Alpha Decay vs Beta Decay – Radioatividade – Definição

Decaimento alfa vs Decaimento beta. Este artigo resume as principais diferenças entre os decaimentos alfa e beta, que têm natureza diferente. As partículas beta são elétrons de alta energia, enquanto as partículas alfa são núcleos de átomos de hélio. Dosimetria de Radiação

O decaimento alfa  (ou decaimento α e também a radioatividade alfa ) representa a desintegração de um núcleo parental para uma filha através da emissão do núcleo de um átomo de hélio. Essa transição pode ser caracterizada como:

Decaimento Alfa - Radioatividade Alfa

Como pode ser visto na figura, a partícula alfa é emitida em decaimento alfa. Partículas alfa são núcleos energéticos de hélio . As partículas alfa consistem em dois prótons e dois nêutrons unidos em uma partícula idêntica a um núcleo de hélio. As partículas alfa são relativamente grandes e carregam uma carga positiva dupla. Eles não são muito penetrantes e um pedaço de papel pode detê-los. Eles viajam apenas alguns centímetros, mas depositam todas as suas energias ao longo de seus caminhos curtos.

Na prática, esse modo de decaimento foi observado apenas em nuclídeos consideravelmente mais pesados ​​que o níquel, com os emissores alfa mais leves conhecidos sendo os isótopos mais leves (números de massa 106–110) de telúrio (elemento 52). Nos reatores nucleares, o decaimento alfa ocorre, por exemplo, no combustível (decaimento alfa de núcleos pesados). As partículas alfa são comumente emitidas por todos os núcleos radioativos pesados ​​que ocorrem na natureza ( urânio , tório ou rádio), bem como pelos elementos transurânicos (neptúnio, plutônio ou amerício).Deterioração de urânio 238.

Teoria do Decaimento Alfa – Tunelamento Quântico

Entre a variedade de canais em que um núcleo decai, o decaimento alfa tem sido um dos mais estudados. O canal de decaimento alfa em núcleos pesados ​​e super pesados ​​forneceu informações sobre as propriedades fundamentais de núcleos distantes da estabilidade, como suas energias no estado fundamental e a estrutura de seus níveis nucleares.

O decaimento alfa é um processo de tunelamento quântico . Para ser emitida, a partícula alfa deve penetrar em uma barreira potencial. Isso é semelhante ao decaimento de aglomerados , no qual um núcleo atômico emite um pequeno “aglomerado” de nêutrons e prótons (por exemplo, 12 ° C).

A altura da barreira de Coulomb para os núcleos de A «200 é de cerca de 20-25 MeV . As partículas alfa emitidas no decaimento nuclear têm energias típicas de cerca de 5 MeV. Por um lado, uma partícula alfa de 5 MeV de entrada é espalhada de um núcleo pesado e não pode penetrar na barreira de Coulomb e chegar suficientemente perto do núcleo para interagir através da força forte. Por outro lado, uma partícula alfa de 5 MeV ligada a um poço de potencial nuclear é capaz de encapsular a mesma barreira de Coulomb.

decaimento alfa - tunelamento quânticoEm 1928, George Gamow (e independentemente por Ronald Gurney e Edward Condon ) havia resolvido a teoria do decaimento alfa via tunelamento quântico. Eles assumiram que a partícula alfa e o núcleo filha existiam dentro do núcleo pai antes de sua dissociação, ou seja, o decaimento dos estados quasistacionários (QS). Um estado quase-estacionário é definido como um estado de vida longa que eventualmente se deteriora. Inicialmente, o cluster alfa oscila no potencial do núcleo filha, com o potencial de Coulomb impedindo sua separação. A partícula alfa está presa em um poço potencial pelo núcleo. Classicamente, é proibido escapar, mas, de acordo com os (então) princípios recém-descobertos da mecânica quântica, há uma pequena (mas não nula) probabilidade de “tunelar” a barreira e aparecer do outro lado para escapar do núcleo. . Usando o mecanismo de tunelamento, Gamow, Condon e Gurney calcularam a capacidade de penetração da partícula α do tunelamento através da barreira de Coulomb, encontrar a vida útil de alguns núcleos emissores de α. O principal sucesso desse modelo foi a reprodução da lei semi-empírica de Geiger-Nuttall, que expressa a vida útil dos emissores α em termos das energias das partículas α liberadas. Deve-se notar que outras formas comuns de decaimento (por exemplo, decaimento beta) são governadas pela interação entre a força nuclear e a força eletromagnética.

Referência especial: WSC Williams. Física Nuclear e de Partículas. Clarendon Press; 1 edição, 1991, ISBN: 978-0198520467.

 

Decaimento beta ou decaimento β representa a desintegração de um núcleo parental para uma filha através da emissão da partícula beta. Essa transição ( β  decaimento ) pode ser caracterizada como:

Deterioração beta - radioatividade beta - definição

Se um núcleo emite uma partícula beta, perde um elétron (ou pósitron). Nesse caso, o número de massa do núcleo filha permanece o mesmo, mas o núcleo filha formará um elemento diferente.

As partículas beta são elétrons ou pósitrons de alta energia e alta velocidade emitidos por certos tipos de núcleos radioativos, como o potássio-40. As partículas beta têm maior alcance de penetração do que as partículas alfa, mas ainda muito menos que os raios gama . As partículas beta emitidas são uma forma de radiação ionizante, também conhecida como raios beta. Existem as seguintes formas de decaimento beta:

  • Decaimento beta negativo – Decaimento de elétrons. No decaimento de elétrons, um núcleo rico em nêutrons emite um elétron de alta energia (β  partícula). Os elétrons são carregados negativamente com partículas quase sem massa. Devido à lei de conservação da carga elétrica, a carga nuclear deve aumentar em uma unidade. Nesse caso, o processo pode ser representado por: 
  • Decaimento beta positivo – Decaimento de pósitrons. No decaimento de pósitrons, um núcleo rico em prótons emite um pósitron (os pósitrons são antipartículas de elétrons e têm a mesma massa que os elétrons, mas com carga elétrica positiva) e, assim, reduzem a carga nuclear em uma unidade. Nesse caso, o processo pode ser representado por: Uma aniquilação ocorre quando um pósitron de baixa energia colide com um elétron de baixa energia.
  • Decaimento Beta Inverso – Captura de Elétrons . A captura de elétrons , também conhecida como decaimento beta inverso, às vezes é incluída como um tipo de decaimento beta, porque o processo nuclear básico, mediado pela interação fraca, é o mesmo. Nesse processo, um núcleo rico em prótons também pode reduzir sua carga nuclear em uma unidade absorvendo um elétron atômico. 

Teoria da deterioração beta – interação fraca

A deterioração beta é governada pela interação fraca . Durante um decaimento beta de dois para baixo quarks muda para um quark-se emitindo um W  Higgs (transporta para longe uma carga negativa). O W  Higgs depois decai para uma partícula beta e um antineutrino . Esse processo é equivalente ao processo no qual um neutrino interage com um nêutron.

teoria do decaimento beta - interação fraca

Como pode ser visto na figura, a interação fraca muda um sabor de quark para outro. Observe que, o Modelo Padrão conta seis sabores de quarks e seis sabores de leptons. A interação fraca é o único processo no qual um quark pode mudar para outro, ou um lepton para outro lepton (mudança de sabor). Nem a forte interação nem eletromagnéticapermitir mudança de sabor. Este fato é crucial em muitos decaimentos de partículas nucleares. No processo de fusão, que, por exemplo, alimenta o Sol, dois prótons interagem através da força fraca para formar um núcleo de deutério, que reage ainda mais para gerar hélio. Sem a interação fraca, o diproton decairia novamente em dois prótons não ligados a hidrogênio-1 através da emissão de prótons. Como resultado, o sol não queimaria sem ele, pois a interação fraca causa a transmutação p -> n.

Ao contrário do decaimento alfa , nem a partícula beta nem seu neutrino associado existem dentro do núcleo antes do decaimento beta, mas são criados no processo de decaimento. Por esse processo, átomos instáveis ​​obtêm uma proporção mais estável de prótons e nêutrons. A probabilidade de decaimento de um nuclídeo devido a beta e outras formas de decaimento é determinada por sua energia de ligação nuclear. Para que a emissão de elétrons ou pósitrons seja energeticamente possível, a liberação de energia (veja abaixo) ou o valor Q deve ser positivo.

 

Espectro de energia da deterioração beta

Tanto no  decaimento alfa  quanto no  gama , a partícula resultante (partícula alfa  ou  fóton ) tem uma  distribuição de energia estreita , uma vez que a partícula carrega a energia da diferença entre os estados nucleares inicial e final. Por exemplo, no caso de decaimento alfa, quando um núcleo pai se decompõe espontaneamente para produzir um núcleo filha e uma partícula alfa, a soma da massa dos dois produtos não é igual à massa do núcleo original (consulte  Defeito em massa ) . Como resultado da lei de conservação de energia, essa diferença aparece na forma da  energia cinética da partícula alfa. Como as mesmas partículas aparecem como produtos a cada quebra de um núcleo pai em particular, a diferença de massa deve  sempre ser a mesma e a energia cinética  das partículas alfa também deve sempre ser a mesma. Em outras palavras, o feixe de partículas alfa deve ser  monoenergético . 

Esperava-se que as mesmas considerações fossem válidas para um núcleo pai se decompor em um núcleo filha e  uma partícula beta . Como apenas o elétron e o núcleo da filha que recuava foram observados com decaimento beta, o processo foi inicialmente  assumido como sendo um processo de dois corpos , muito parecido com o decaimento alfa. Parece razoável supor que as partículas beta também formem um  feixe monoenergético .

Para demonstrar a energética do corpo de dois decaimento beta, considerar o decaimento beta no qual um electrão é emitido e o núcleo pai está em repouso,  onservation de energia  requer:

conservação de energia-decaimento beta

Como o elétron é uma partícula muito mais leve, esperava-se que ele levasse a maior parte da energia liberada, o que teria um valor único  e- .

Espectro de energia do decaimento beta
A forma dessa curva de energia depende de qual fração da energia da reação (valor Q – a quantidade de energia liberada pela reação) é transportada pelo elétron ou neutrino.

Mas a realidade era diferente . O espectro de partículas beta medido por Lise Meitner e Otto Hahn em 1911 e por Jean Danysz em 1913 mostrou várias linhas em um fundo difuso, no entanto. Além disso, virtualmente todas as partículas beta emitidas possuem energia abaixo da prevista pela conservação de energia em decaimentos de dois corpos. Os elétrons emitidos no  decaimento beta têm um  espectro contínuo, em vez de discreto, que parece contradizer a conservação de energia, sob a suposição atual de que o decaimento beta é a simples emissão de elétrons de um núcleo. Quando isso foi observado pela primeira vez,  parecia ameaçar a sobrevivência de uma das leis de conservação mais importantes da física !

Para explicar essa liberação de energia,  Pauli propôs  (em 1931) que no processo de decaimento fosse emitida  outra partícula , mais tarde nomeada por Fermi como  neutrino . Ficou claro que essa partícula deve ser altamente penetrante e que a conservação da carga elétrica exige que o neutrino seja eletricamente neutro. Isso explicaria por que era tão difícil detectar essa partícula. O termo neutrino vem do italiano que significa “pouco neutro” e os neutrinos são denotados pela letra grega  ν (nu) . No processo de decaimento beta, o neutrino carrega a energia que falta e também nesse processo a lei de  conservação de energia permanece válida .

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é atenuação de raios-X – Definição

A teoria da atenuação de raios X descreve como os raios X são atenuados pelos materiais. A teoria da atenuação também é válida para raios-X e raios gama. Dosimetria de Radiação

Os raios X , também conhecidos como radiação X , referem-se à radiação eletromagnética (sem massa em repouso, sem carga) de altas energias. Os raios X são fótons de alta energia, com comprimentos de onda curtos e, portanto, frequência muito alta. A frequência de radiação é o parâmetro chave de todos os fótons, porque determina a energia de um fóton. Os fótons são classificados de acordo com as energias das ondas de rádio de baixa energia e radiação infravermelha, através da luz visível, aos raios X de alta energia e raios gama .

A maioria dos raios X tem um comprimento de onda variando de 0,01 a 10 nanômetros (3 × 10 16 Hz a 3 × 10 19 Hz), correspondendo a energias na faixa de 100 eV a 100 keV. Os comprimentos de onda dos raios X são mais curtos que os dos raios UV e geralmente mais longos que os dos raios gama. A distinção entre raios X e raios gama não é tão simples e mudou nas últimas décadas. De acordo com a definição atualmente válida, os raios X são emitidos por elétrons fora do núcleo, enquanto os raios gama são emitidos pelo núcleo .

Atenuação de raios X

Coeficientes de atenuação.
Total de seções transversais de fótons.
Fonte: Wikimedia Commons

À medida que os fótons de alta energia passam pelo material, sua energia está diminuindo. Isso é conhecido como atenuação . A teoria da atenuação também é válida para raios-X e raios gama . Acontece que os fótons de energia mais alta (raios-X duros) viajam através do tecido mais facilmente do que os fótons de baixa energia (isto é, os fótons de energia mais alta têm menor probabilidade de interagir com a matéria). Grande parte desse efeito está relacionada ao efeito fotoelétrico . A probabilidade de absorção fotoelétrica é aproximadamente proporcional a (Z / E) 3, onde Z é o número atômico do átomo de tecido e E é a energia do fóton. À medida que E aumenta, a probabilidade de interação diminui rapidamente. Para energias mais altas, a dispersão de Compton se torna dominante. A dispersão de Compton é constante para energias diferentes, embora diminua lentamente em energias mais altas.

Atenuação Exponencial

Suponha que os raios X monoenergéticos sejam colimados em um feixe estreito e o detector atrás do material apenas detecte os raios X que passaram por esse material sem nenhum tipo de interação com esse material; então, a dependência deve ser uma atenuação exponencial simples dos raios X . Cada uma dessas interações remove o fóton do feixe por absorção ou dispersão na direção do detector. Portanto, as interações podem ser caracterizadas por uma probabilidade fixa de ocorrência por unidade de comprimento do caminho no absorvedor. A soma dessas probabilidades é chamada de coeficiente de atenuação linear :

μ = τ (fotoelétrico) + σ (Compton)

Atenuação de raios gama
A importância relativa de vários processos de interação da radiação gama com a matéria.

Coeficiente de atenuação linear – raios-X

A atenuação dos raios X pode ser descrita pela seguinte equação.

I = I 0 .e -μx

, onde I é a intensidade após a atenuação, I o é a intensidade do incidente, μ é o coeficiente de atenuação linear (cm -1 ) e a espessura física do absorvedor (cm).

Atenuação
Dependência da intensidade da radiação gama na espessura do absorvedor

Os materiais listados na tabela são ar, água e elementos diferentes do carbono ( Z = 6) ao chumbo ( Z = 82) e seus coeficientes de atenuação linear são dados para duas energias de raios-X. Existem duas características principais do coeficiente de atenuação linear:

  • O coeficiente de atenuação linear aumenta à medida que o número atômico do absorvedor aumenta.
  • O coeficiente de atenuação linear para todos os materiais diminui com a energia dos raios-X.

Camada de metade do valor

A camada de meio valor expressa a espessura do material absorvente necessário para reduzir a intensidade da radiação incidente por um fator de dois . Existem duas características principais da camada de meio valor:

  • camada de metade do valor diminui à medida que o número atômico do absorvedor aumenta. Por exemplo, são necessários 35 m de ar para reduzir a intensidade de um feixe de raios X de 100 keV por um fator de dois, enquanto apenas 0,12 mm de chumbo podem fazer a mesma coisa.
  • camada de metade do valor para todos os materiais aumenta com a energia dos raios-X. Por exemplo, de 0,26 cm para ferro a 100 keV a cerca de 0,64 cm a 200 keV.

Coeficiente de atenuação de massa

Ao caracterizar um material absorvente, às vezes podemos usar o coeficiente de atenuação da massa.  O coeficiente de atenuação da massa é definido como a razão entre o coeficiente de atenuação linear e a densidade do absorvedor (μ / ρ) . A atenuação dos raios X pode ser descrita pela seguinte equação:

I = I 0 .e – (μ / ρ) .ρl

, onde ρ é a densidade do material, (μ / ρ) é o coeficiente de atenuação da massa e ρ.l é a espessura da massa. A unidade de medida usada para o coeficiente de atenuação da massa cm 2 g -1 . Para energias intermediárias, o espalhamento de Compton domina e diferentes absorvedores têm coeficientes de atenuação de massa aproximadamente iguais . Isso se deve ao fato de que a seção transversal da dispersão de Compton é proporcional ao Z (número atômico) e, portanto, o coeficiente é proporcional à densidade do material ρ. Em pequenos valores de energia de raios-X, onde o coeficiente é proporcional a potências mais altas do número atômico Z (para efeito fotoelétrico σ f ~ Z 3 ), o coeficiente de atenuação μ não é constante.

Veja também calculadora:  Atividade gama para taxa de dose (com / sem proteção)

Consulte também XCOM – seção transversal do fóton DB:  XCOM: banco de dados de seções transversais do fóton

Exemplo:

De quanto água é necessário o escorço, se você deseja reduzir a intensidade de um feixe de raios X monoenergético de 100 keV ( feixe estreito ) para 1% da intensidade do incidente? A camada de meio valor para raios-X de 100 keV na água é de 4,15 cm e o coeficiente de atenuação linear para raios-X de 100 keV na água é de 0,167 cm- 1 . O problema é bastante simples e pode ser descrito pela seguinte equação:

Se a camada de meio valor para a água for 4,15 cm, o coeficiente de atenuação linear é:Agora podemos usar a equação de atenuação exponencial:atenuação de raios-x - problema com solução

Portanto, a espessura necessária da água é de cerca de 27,58 cm . Essa espessura é relativamente grande e é causada por um pequeno número atômico de hidrogênio e oxigênio. Se calcularmos o mesmo problema para o chumbo (Pb) , obteremos a espessura x = 0,077 cm .

Coeficientes de atenuação linear

Tabela de coeficientes de atenuação linear (em cm -1 ) para diferentes materiais com energias de fótons de 100, 200 e 500 keV.

Absorvedor 100 keV 200 keV 500 keV
Ar   0.000195 / cm   0.000159 / cm   0.000112 / cm
Água 0,167 / cm 0,136 / cm 0,097 / cm
Carbono 0,335 / cm 0,274 / cm 0.196 / cm
Alumínio 0.435 / cm 0,324 / cm 0,227 / cm
Ferro 2,72 / cm 1.09 / cm 0.655 / cm
Cobre 3.8 / cm 1,309 / cm 0,73 / cm
Conduzir 59,7 / cm 10,15 / cm 1,64 / cm

Camadas de metade do valor

Tabela de camadas de meio valor (em cm) para diferentes materiais com energias de fótons de 100, 200 e 500 keV.

Absorvedor 100 keV 200 keV 500 keV
Ar 3555 cm 4359 cm 6189 cm
Água 4,15 cm 5.1 cm 7.15 cm
Carbono 2,07 cm 2,53 cm 3.54 cm
Alumínio 1,59 cm 2,14 cm 3.05 cm
Ferro 0,26 cm 0,64 cm 1.06 cm
Cobre 0,18 cm 0,53 cm 0,95 cm
Conduzir  0.012 cm  0.068 cm  0,42 cm

Validade da lei exponencial

A lei exponencial sempre descreverá a atenuação da radiação primária pela matéria. Se partículas secundárias forem produzidas ou se a radiação primária mudar sua energia ou direção, a atenuação efetiva será muito menor. A radiação penetrará mais profundamente na matéria do que a prevista pela lei exponencial. O processo deve ser levado em consideração ao avaliar o efeito da proteção contra radiação.

Exemplo de acumulação de partículas secundárias.  Depende fortemente do caráter e dos parâmetros das partículas primárias.
Exemplo de acumulação de partículas secundárias. Depende fortemente do caráter e dos parâmetros das partículas primárias.

 

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é blindagem de raios-X – Definição

A blindagem eficaz dos raios X é, na maioria dos casos, baseada no uso de materiais com duas propriedades de materiais a seguir: Alto número atômico e material de densidade. Blindagem de raios-X

Blindagem de raios gama e raios-XOs raios X , também conhecidos como radiação X , referem-se à radiação eletromagnética (sem massa em repouso, sem carga) de altas energias. Os raios X são fótons de alta energia, com comprimentos de onda curtos e, portanto, frequência muito alta. A frequência de radiação é o parâmetro chave de todos os fótons, porque determina a energia de um fóton. Os fótons são classificados de acordo com as energias das ondas de rádio de baixa energia e radiação infravermelha, através da luz visível, aos raios X de alta energia e raios gama .

A maioria dos raios X tem um comprimento de onda variando de 0,01 a 10 nanômetros (3 × 10 16 Hz a 3 × 10 19 Hz), correspondendo a energias na faixa de 100 eV a 100 keV. Os comprimentos de onda dos raios X são mais curtos que os dos raios UV e geralmente mais longos que os dos raios gama. A distinção entre raios X e raios gama não é tão simples e mudou nas últimas décadas. De acordo com a definição atualmente válida, os raios X são emitidos por elétrons fora do núcleo, enquanto os raios gama são emitidos pelo núcleo .

Blindagem de raios-X

Veja também: Blindagem de radiação ionizante

Atenuação de raios X

Coeficientes de atenuação.
Total de seções transversais de fótons.
Fonte: Wikimedia Commons

À medida que os fótons de alta energia passam pelo material, sua energia está diminuindo. Isso é conhecido como atenuação . A teoria da atenuação também é válida para raios-X e raios gama . Acontece que os fótons de energia mais alta (raios-X duros) viajam através do tecido mais facilmente do que os fótons de baixa energia (isto é, os fótons de energia mais alta têm menor probabilidade de interagir com a matéria). Grande parte desse efeito está relacionada ao efeito fotoelétrico . A probabilidade de absorção fotoelétrica é aproximadamente proporcional a (Z / E) 3, onde Z é o número atômico do átomo de tecido e E é a energia do fóton. À medida que E aumenta, a probabilidade de interação diminui rapidamente. Para energias mais altas, a dispersão de Compton se torna dominante. A dispersão de Compton é constante para energias diferentes, embora diminua lentamente em energias mais altas.

meia camada de valor

Como pode ser visto, a blindagem eficaz dos raios X é, na maioria dos casos, baseada no uso de materiais com duas propriedades de materiais a seguir:

  • alta densidade de material.
  • alto número atômico de material (materiais com alto Z)

No entanto, materiais de baixa densidade e materiais de baixo Z podem ser compensados ​​com espessura aumentada, o que é tão significativo quanto a densidade e o número atômico em aplicações de blindagem.

Um chumbo é amplamente utilizado como um escudo de raios-X . A principal vantagem da blindagem de chumbo está na sua compacidade devido à sua maior densidade. Um chumbo é amplamente utilizado como um escudo gama. Por outro lado, o  urânio empobrecido  é muito mais eficaz devido ao seu maior Z. O urânio empobrecido é usado para blindagem em fontes portáteis de raios gama.

Em  usinas nucleares, a  blindagem de um  núcleo de reator  pode ser fornecida por materiais do vaso de pressão do reator, internos do reator ( refletor de nêutrons ). Também o concreto pesado é geralmente usado para proteger os  nêutrons  e a radiação gama.

Em geral, a blindagem de raios-X é mais complexa e difícil do que a  blindagem de radiação alfa  ou  beta . Para entender de maneira abrangente como um raio X perde sua energia inicial, como pode ser atenuado e como pode ser protegido, precisamos ter um conhecimento detalhado dos mecanismos de interação.

Veja também mais teoria:  Interação de raios-X com a matéria

Veja também calculadora:  Atividade gama para taxa de dose (com / sem proteção)

Consulte também XCOM – seção transversal do fóton DB:  XCOM: banco de dados de seções transversais do fóton

Camada de metade do valor – raios-X

A camada de meio valor expressa a espessura do material absorvente necessário para reduzir a intensidade da radiação incidente por um fator de dois . Existem duas características principais da camada de meio valor:

  • camada de metade do valor diminui à medida que o número atômico do absorvedor aumenta. Por exemplo, são necessários 35 m de ar para reduzir a intensidade de um feixe de raios X de 100 keV por um fator de dois, enquanto apenas 0,12 mm de chumbo podem fazer a mesma coisa.
  • camada de metade do valor para todos os materiais aumenta com a energia dos raios-X. Por exemplo, de 0,26 cm para ferro a 100 keV a cerca de 0,64 cm a 200 keV.

Exemplo:

De quanto água é necessário o escorço, se você deseja reduzir a intensidade de um feixe de raios X monoenergético de 100 keV ( feixe estreito ) para 1% da intensidade do incidente? A camada de meio valor para raios-X de 100 keV na água é de 4,15 cm e o coeficiente de atenuação linear para raios-X de 100 keV na água é de 0,167 cm- 1 . O problema é bastante simples e pode ser descrito pela seguinte equação:

Se a camada de meio valor para a água for 4,15 cm, o coeficiente de atenuação linear é:Agora podemos usar a equação de atenuação exponencial:atenuação de raios-x - problema com solução

Portanto, a espessura necessária da água é de cerca de 27,58 cm . Essa espessura é relativamente grande e é causada por um pequeno número atômico de hidrogênio e oxigênio. Se calcularmos o mesmo problema para o chumbo (Pb) , obteremos a espessura x = 0,077 cm .

Tabela de camadas de metade do valor

Tabela de camadas de meio valor (em cm) para diferentes materiais com energias de fótons de 100, 200 e 500 keV.

Absorvedor 100 keV 200 keV 500 keV
Ar 3555 cm 4359 cm 6189 cm
Água 4,15 cm 5.1 cm 7.15 cm
Carbono 2,07 cm 2,53 cm 3.54 cm
Alumínio 1,59 cm 2,14 cm 3.05 cm
Ferro 0,26 cm 0,64 cm 1.06 cm
Cobre 0,18 cm 0,53 cm 0,95 cm
Conduzir  0.012 cm  0.068 cm  0,42 cm

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é interação de raios-X com matéria – definição

Interação de raios-X com a matéria. Embora seja conhecido um grande número de possíveis interações, existem três mecanismos principais de interação com a matéria. Dosimetria de Radiação

Os raios X , também conhecidos como radiação X , referem-se à radiação eletromagnética (sem massa em repouso, sem carga) de altas energias. Os raios X são fótons de alta energia, com comprimentos de onda curtos e, portanto, frequência muito alta. A frequência de radiação é o parâmetro chave de todos os fótons, porque determina a energia de um fóton. Os fótons são classificados de acordo com as energias das ondas de rádio de baixa energia e radiação infravermelha, através da luz visível, aos raios X de alta energia e raios gama .

A maioria dos raios X tem um comprimento de onda variando de 0,01 a 10 nanômetros (3 × 10 16 Hz a 3 × 10 19 Hz), correspondendo a energias na faixa de 100 eV a 100 keV. Os comprimentos de onda dos raios X são mais curtos que os dos raios UV e geralmente mais longos que os dos raios gama. A distinção entre raios X e raios gama não é tão simples e mudou nas últimas décadas. De acordo com a definição atualmente válida, os raios X são emitidos por elétrons fora do núcleo, enquanto os raios gama são emitidos pelo núcleo .

Como os raios X (especialmente os raios X duros) são substancialmente fótons de alta energia, eles são matéria muito penetrante e, portanto, são biologicamente perigosos. Os raios X podem viajar milhares de pés no ar e podem facilmente passar pelo corpo humano.

Interação de raios-X com a matéria

Embora seja conhecido um grande número de possíveis interações, existem três mecanismos principais de interação com a matéria. A força dessas interações depende da energia dos raios X e da composição elementar do material, mas não muito das propriedades químicas, uma vez que a energia dos fótons dos raios X é muito maior que as energias químicas de ligação. A absorção fotoelétrica domina com baixas energias dos raios X, enquanto a dispersão de Compton domina com energias mais altas.

  • Absorção fotoelétrica
  • Efeito Compton
  • dispersão de Rayleigh

Absorção fotoelétrica de raios-X

Absorção gama por um átomo.  Fonte: laradioactivite.com/
Absorção gama por um átomo. Fonte: laradioactivite.com/

No efeito fotoelétrico, um fóton sofre uma interação com um elétron que está ligado em um átomo. Nesta interação, o fóton incidente desaparece completamente e um fotoelétron energético é ejetado pelo átomo de uma de suas conchas ligadas . A energia cinética do fotoelétron ejetado (E e ) é igual à energia incidente do fóton (hν) menos a energia de ligação do fotoelétron em seu invólucro original (E b ).

e = hν-E b

Portanto, os fotoelétrons são emitidos apenas pelo efeito fotoelétrico se o fóton atingir ou exceder um limiar de energia – a energia de ligação do elétron – a função de trabalho do material. Para raios-X muito altos com energias superiores a centenas de keV, o fotoelétron retira a maior parte da energia incidente do fóton – hν.

Em pequenos valores de energia de raios gama, o efeito fotoelétrico domina . O mecanismo também é aprimorado para materiais de alto número atômico Z. Não é simples derivar expressão analítica para a probabilidade de absorção fotoelétrica de raios gama por átomo em todas as faixas de energias de raios gama. A probabilidade de absorção fotoelétrica por unidade de massa é aproximadamente proporcional a:

τ (fotoelétrico) = constante x Z N / E 3.5

onde Z é o número atômico, o expoente n varia entre 4 e 5. E é a energia do fóton incidente. A proporcionalidade para potências mais altas do número atômico Z é a principal razão para o uso de materiais com alto teor de Z, como chumbo ou urânio empobrecido em escudos de raios gama.

Seção transversal de efeito fotoelétrico.Embora a probabilidade de absorção fotoelétrica do fóton diminua, em geral, com o aumento da energia do fóton, existem acentuadas descontinuidades na curva de seção transversal. Estes são chamados de “bordas de absoption”e eles correspondem às energias de ligação dos elétrons das conchas atadas dos átomos. Para fótons com a energia logo acima da borda, a energia do fóton é apenas suficiente para sofrer a interação fotoelétrica com o elétron da casca ligada, digamos K-shell. A probabilidade de tal interação está logo acima dessa borda muito maior do que a de fótons de energia ligeiramente abaixo dessa borda. Para fótons abaixo dessa borda, a interação com o elétron da casca K é energeticamente impossível e, portanto, a probabilidade cai abruptamente. Essas arestas ocorrem também em energias de ligação de elétrons de outras camadas (L, M, N … ..).

Compton Dispersão de raios-X

Efeito Comptonfórmula de Compton foi publicada em 1923 na Physical Review. Compton explicou que o deslocamento dos raios X é causado pelo momento de partículas dos fótons . A fórmula de dispersão de Compton é a relação matemática entre a mudança no comprimento de onda e o ângulo de dispersão dos raios-X. No caso de espalhamento de Compton, o fóton de frequência  f  colide com um elétron em repouso. Após a colisão, o fóton ricocheteia o elétron, perdendo parte de sua energia inicial (dada pela fórmula E = hf de Planck). Enquanto o elétron ganha impulso (massa x velocidade), o  fóton não pode diminuir sua velocidade. Como resultado da lei de conservação do momento, o fóton deve diminuir seu momento dado por:

Como resultado da lei de conservação do momento, o fóton deve diminuir seu momento dado por esta fórmula.

Compton Scattering
Na dispersão de Compton, o fóton de raios gama incidente é desviado através de um ângulo respect em relação à sua direção original. Essa deflexão resulta em uma diminuição na energia (diminuição na frequência do fóton) do fóton e é chamado de efeito Compton.
Fonte: hyperphysics.phy-astr.gsu.edu

Portanto, a diminuição do momento do fóton deve ser traduzida em  diminuição da frequência  (aumento no comprimento de onda Δ λ = λ ‘- λ ). A mudança do comprimento de onda aumentou com o ângulo de dispersão, de acordo com  a fórmula de Compton :

O deslocamento do comprimento de onda aumentou com o ângulo de dispersão, de acordo com a fórmula de Compton

onde λ  é o comprimento de onda inicial do fóton λ ‘  é o comprimento de onda após a dispersão,  é a constante de Planck = 6,626 x 10 -34  Js, e  é a massa de repouso do elétron (0,511 MeV) c  é a velocidade da luz Θ  é a dispersão ângulo. A mudança mínima no comprimento de onda ( λ ′  –  λ ) para o fóton ocorre quando Θ = 0 ° (cos (Θ) = 1) e é pelo menos zero. A variação máxima no comprimento de onda ( λ ′  –  λ) para o fóton ocorre quando Θ = 180 ° (cos (Θ) = – 1). Nesse caso, o fóton transfere para o elétron o máximo de momento possível. A mudança máxima no comprimento de onda pode ser derivada da fórmula de Compton:

A mudança máxima no comprimento de onda pode ser derivada da fórmula de Compton.  Comprimento Compton

A quantidade h / m e c é conhecida como  comprimento  de onda do elétron de Compton e é igual a  2,43 × 10−12 m .

Espalhamento por Rayleigh – Espalhamento Thomson

A dispersão Rayleigh , também conhecida como Thomson, é o limite de baixa energia da dispersão Compton. A energia cinética das partículas e a frequência de fótons não mudam como resultado da dispersão. A dispersão de Rayleigh ocorre como resultado de uma interação entre um fóton e um elétron, cuja energia de ligação é significativamente maior que a do fóton recebido. Presume-se que a radiação incidente coloque o elétron em oscilação ressonante forçada, de modo que o elétron reemita radiação da mesma frequência, mas em todas as direções. Nesse caso, o campo elétrico da onda incidente (fóton) acelera a partícula carregada, fazendo com que, por sua vez, emita radiação na mesma frequência que a onda incidente e, assim, a onda é dispersa. A dispersão de Rayleigh é significativa até ± 20keV e, como a dispersão de Thomson, é elástica. A seção transversal de dispersão total se torna uma combinação das seções transversais de dispersão ligadas por Rayleigh e Compton. A dispersão de Thomson é um fenômeno importante na física do plasma e foi explicada pela primeira vez pelo físico JJ Thomson. Essa interação tem grande significado na área da cristalografia de raios-X.

 

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é taxa de dose absorvida – Definição

A taxa de dose absorvida é a taxa na qual uma dose absorvida é recebida. É uma medida da intensidade da dose de radiação (ou força). Taxa de dose absorvida

Dose absorvidaDose absorvida é definida como a quantidade de energia depositada pela radiação ionizante em uma substância. Dose absorvida é dado o símbolo D . A dose absorvida é geralmente medida em uma unidade chamada cinza (Gy), que é derivada do sistema SI. Às vezes, a unidade não-SI rad também é usada, predominantemente nos EUA.

dose absorvida - definição

Unidades de dose absorvida:

  • Gray . Uma dose de um cinza é equivalente a uma unidade de energia (joule) depositada em um quilograma de uma substância.
  • RAD . Uma dose de um rad é equivalente à deposição de cem ergs de energia em um grama de qualquer material.

Taxa de dose absorvida

taxa de dose absorvida é a taxa na qual uma dose absorvida é recebida. É uma medida da intensidade da dose de radiação (ou força). A taxa de dose absorvida é, portanto, definida como:

taxa de dose absorvida - definição

Nas unidades convencionais, é medido em mrad / s ,  rad / h, mGy / s ou Gy / h. Como a quantidade de exposição à radiação depende diretamente (linearmente) do tempo que as pessoas passam perto da fonte de radiação, a dose absorvida é igual à força do campo de radiação (taxa de dose) multiplicada pelo tempo gasto nesse campo. O exemplo acima indica que uma pessoa pode esperar receber uma dose de 25 millirems, permanecendo em um campo de 50 millirems / hora por trinta minutos.

Exemplos de doses absorvidas em cinzas

Devemos notar que a radiação está à nossa volta. Dentro, ao redor e acima do mundo em que vivemos. É uma força de energia natural que nos rodeia. É uma parte do nosso mundo natural que está aqui desde o nascimento do nosso planeta. Nos pontos seguintes, tentamos expressar enormes faixas de exposição à radiação, que podem ser obtidas de várias fontes.

  • 0,05 µGy – Dormindo ao lado de alguém
  • 0,09 µGy – Morando a 48 quilômetros de uma usina nuclear por um ano
  • 0,1 µGy – Comendo uma banana
  • 0,3 µGy – Morando a 80 quilômetros de uma usina a carvão por um ano
  • 10 µGy – Dose média diária recebida do fundo natural
  • 20 µGy – radiografia de tórax
  • 40 µGy – Um voo de avião de 5 horas
  • 600 µGy – mamografia
  • 1 000 µGy – Limite de dose para membros individuais do público, dose efetiva total por ano
  • 3 650 µGy – Dose média anual recebida do fundo natural
  • 5 800 µGy – Tomografia computadorizada de tórax
  • 10 000 µGy – Dose média anual recebida do ambiente natural em Ramsar, Irã
  • 20 000 µGy – tomografia computadorizada de corpo inteiro
  • 175 000 µGy – Dose anual de radiação natural em uma praia de monazita perto de Guarapari, Brasil.
  • 5 000 000 µGy – Dose que mata um ser humano com um risco de 50% dentro de 30 dias (LD50 / 30), se a dose for recebida por um período muito curto .

Como pode ser visto, doses baixas são comuns na vida cotidiana. Os exemplos anteriores podem ajudar a ilustrar magnitudes relativas. Do ponto de vista das consequências biológicas, é muito importante distinguir entre doses recebidas em períodos curtos e prolongados . Uma “ dose aguda ” é aquela que ocorre por um período curto e finito de tempo, enquanto uma “ dose crônica ””É uma dose que continua por um longo período de tempo, para que seja melhor descrita por uma taxa de dose. Altas doses tendem a matar células, enquanto doses baixas tendem a danificá-las ou alterá-las. Doses baixas espalhadas por longos períodos de tempo não causam problemas imediatos a nenhum órgão do corpo. Os efeitos de baixas doses de radiação ocorrem no nível da célula e os resultados podem não ser observados por muitos anos.

Cálculo da taxa de dose protegida

Suponha a fonte isotrópica pontual que contém 1,0 Ci de 137 Cs , que tem uma meia-vida de 30,2 anos . Observe que a relação entre a meia-vida e a quantidade de radionuclídeo necessária para gerar uma atividade de um curie é mostrada abaixo. Essa quantidade de material pode ser calculada usando λ, que é a constante de decaimento de determinado nuclídeo:

Curie - Unidade de Atividade

Cerca de 94,6% decai por emissão beta em um isômero nuclear metaestável de bário: bário-137m. O pico principal de fótons de Ba-137m é 662 keV . Para esse cálculo, suponha que todos os decaimentos passem por esse canal.

Determine a taxa de dose primária do fóton , em cinza por hora (Gy.h -1 ), na superfície externa de uma blindagem de chumbo de 5 cm de espessura. A taxa de dose primária de fótons negligencia todas as partículas secundárias. Suponha que a distância efetiva da fonte do ponto de dose seja 10 cm . Também devemos assumir que o ponto de dose é um tecido mole, que pode ser razoavelmente simulado pela água e usamos o coeficiente de absorção de energia em massa da água.

Veja também: Atenuação de raios gama

Veja também: Blindagem de raios gama

Solução:

A taxa de dose primária de fótons é atenuada exponencialmente , e a taxa de dose de fótons primários, levando em consideração o escudo, é dada por:

cálculo da taxa de dose

Como pode ser visto, não consideramos o acúmulo de radiação secundária. Se partículas secundárias forem produzidas ou se a radiação primária mudar sua energia ou direção, a atenuação efetiva será muito menor. Essa suposição geralmente subestima a taxa de dose verdadeira, especialmente para blindagens espessas e quando o ponto de dose está próximo à superfície da blindagem, mas essa suposição simplifica todos os cálculos. Nesse caso, a taxa real de dose (com o acúmulo de radiação secundária) será mais de duas vezes maior.

Para calcular a taxa de dose absorvida , precisamos usar a fórmula:

  • k = 5,76 x 10 -7
  • S = 3,7 x 10 10 s -1
  • E = 0,662 MeV
  • μ t / ρ =  0,0326 cm 2 / g (os valores estão disponíveis no NIST)
  • μ = 1,289 cm -1 (os valores estão disponíveis no NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

A taxa de dose absorvida resultante em cinza por hora é então:

taxa de dose absorvida - cinza - cálculo

Se queremos dar conta do acúmulo de radiação secundária, precisamos incluir o fator de acúmulo. A fórmula estendida para a taxa de dose é então:

taxa de dose absorvida - cinza


……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é dose absorvida – Definição

Dose absorvida é definida como a quantidade de energia depositada pela radiação ionizante em uma substância. A dose absorvida recebe o símbolo D. A dose absorvida é geralmente medida em uma unidade chamada cinza (Gy), que é derivada do sistema SI. Dosimetria de Radiação

Dose absorvida é definida como a quantidade de energia depositada pela radiação ionizante em uma substância. Dose absorvida é dado o símbolo D . A dose absorvida é geralmente medida em uma unidade chamada cinza (Gy), que é derivada do sistema SI. Às vezes, a unidade não-SI rad também é usada, predominantemente nos EUA.

dose absorvida - definição

Dose absorvidaUnidades de dose absorvida:

  • Gray . Uma dose de um cinza é equivalente a uma unidade de energia (joule) depositada em um quilograma de uma substância.
  • RAD . Uma dose de um rad é equivalente à deposição de cem ergs de energia em um grama de qualquer material.

Por que lidamos com uma dose de radiação? Nos capítulos anteriores, discutimos a radioatividade e a intensidade de uma fonte radioativa, medida geralmente em becquerels . Mas qualquer fonte radioativa não representa risco biológico , desde que isolada do ambiente. No entanto, quando pessoas ou outro sistema (também não biológico) são expostos à radiação, a energia é depositada no material e a dose de radiação é fornecida.

Portanto, é muito importante distinguir entre a radioatividade de uma fonte radioativa e a dose de radiação que pode resultar da fonte. Geralmente, a dose de radiação depende dos seguintes fatores em relação à fonte radioativa:

  • Atividade. A atividade da fonte influencia diretamente a dose de radiação depositada no material.
  • Tipo de radiação . Cada tipo de radiação interage com a matéria de uma maneira diferente . Por exemplo, partículas carregadas com altas energias podem ionizar diretamente átomos. Por outro lado, partículas eletricamente neutras interagem apenas indiretamente, mas também podem transferir parte ou todas as suas energias para o assunto.
  • Distância. A quantidade de exposição à radiação depende da distância da fonte de radiação. Da mesma forma que o calor de um incêndio, se você estiver muito próximo, a intensidade da radiação de calor é alta e você pode se queimar. Se você estiver na distância certa, você pode suportar sem problemas e, além disso, é confortável. Se você estiver muito longe da fonte de calor, a insuficiência de calor também poderá prejudicá-lo. Essa analogia, em certo sentido, pode ser aplicada à radiação também de fontes de radiação.
  • Tempo. A quantidade de exposição à radiação depende diretamente (linearmente) do tempo que as pessoas passam perto da fonte de radiação.
  • Blindagem. Finalmente, a dose de radiação também depende do material entre a fonte e o objeto. Se a fonte for muito intensa e o tempo ou a distância não fornecerem proteção suficiente contra radiação, a blindagem poderá ser usada.

O perigo de radiação ionizante reside no fato de que a radiação é invisível e não diretamente detectável pelos sentidos humanos. As pessoas não podem ver nem sentir radiação, mas ela deposita energia nas moléculas do corpo. A energia é transferida em pequenas quantidades para cada interação entre a radiação e uma molécula e geralmente existem muitas dessas interações.

Nas usinas nucleares, o problema central é proteger pessoal e o meio ambiente contra raios gama e nêutrons , porque os intervalos de partículas carregadas (como as partículas beta e as alfa) na matéria são muito curtos. Por outro lado, devemos lidar com a proteção de todos os tipos de radiação, porque cada reator nuclear é uma fonte significativa de todos os tipos de radiação ionizante.

Veja também: Atenuação de raios gama

Veja também: Blindagem de nêutrons

 

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é o cálculo da dose absorvida – Problema – Definição

Cálculo da dose absorvida – Problema. Calcule a taxa de dose primária de fótons, em cinza por hora (Gy.h-1), na superfície externa de uma blindagem de chumbo com 5 cm de espessura. Dosimetria de Radiação

Dose absorvida é definida como a quantidade de energia depositada pela radiação ionizante em uma substância. Dose absorvida é dado o símbolo D . A dose absorvida é geralmente medida em uma unidade chamada cinza (Gy), que é derivada do sistema SI. Às vezes, a unidade não-SI rad também é usada, predominantemente nos EUA.

dose absorvida - definição

Dose absorvida

Cálculo da taxa de dose protegida

Suponha a fonte isotrópica pontual que contém 1,0 Ci de 137 Cs , que tem uma meia-vida de 30,2 anos . Observe que a relação entre a meia-vida e a quantidade de radionuclídeo necessária para gerar uma atividade de um curie é mostrada abaixo. Essa quantidade de material pode ser calculada usando λ, que é a constante de decaimento de determinado nuclídeo:

Curie - Unidade de Atividade

Cerca de 94,6% decai por emissão beta em um isômero nuclear metaestável de bário: bário-137m. O pico principal de fótons de Ba-137m é 662 keV . Para esse cálculo, suponha que todos os decaimentos passem por esse canal.

Determine a taxa de dose primária do fóton , em cinza por hora (Gy.h -1 ), na superfície externa de uma blindagem de chumbo com 5 cm de espessura. A taxa de dose primária de fótons negligencia todas as partículas secundárias. Suponha que a distância efetiva da fonte do ponto de dose seja 10 cm . Também devemos assumir que o ponto de dose é um tecido mole, que pode ser razoavelmente simulado pela água e usamos o coeficiente de absorção de energia em massa da água.

Veja também: Atenuação de raios gama

Veja também: Blindagem de raios gama

Solução:

A taxa de dose primária de fótons é atenuada exponencialmente , e a taxa de dose de fótons primários, levando em consideração o escudo, é dada por:

cálculo da taxa de dose

Como pode ser visto, não consideramos o acúmulo de radiação secundária. Se partículas secundárias forem produzidas ou se a radiação primária mudar sua energia ou direção, a atenuação efetiva será muito menor. Essa suposição geralmente subestima a taxa de dose verdadeira, especialmente para blindagens espessas e quando o ponto de dose está próximo à superfície da blindagem, mas essa suposição simplifica todos os cálculos. Nesse caso, a taxa real de dose (com o acúmulo de radiação secundária) será mais de duas vezes maior.

Para calcular a taxa de dose absorvida , precisamos usar a fórmula:

  • k = 5,76 x 10 -7
  • S = 3,7 x 10 10 s -1
  • E = 0,662 MeV
  • μ t / ρ = 0,0326 cm 2 / g (os valores estão disponíveis no NIST)
  • μ = 1,289 cm -1 (os valores estão disponíveis no NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

A taxa de dose absorvida resultante em cinza por hora é então:

taxa de dose absorvida - cinza - cálculo

Se queremos dar conta do acúmulo de radiação secundária, precisamos incluir o fator de acúmulo. A fórmula estendida para a taxa de dose é então:

taxa de dose absorvida - cinza

 

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é Gray – Unidade de dose de radiação – Definição

Uma dose de um cinza é equivalente a uma unidade de energia (joule) depositada em um quilograma de uma substância. Esta unidade foi nomeada em homenagem a Louis Harold Gray. Cinza – Unidade de dose de radiação

Dose absorvida é definida como a quantidade de energia depositada pela radiação ionizante em uma substância. Dose absorvida é dado o símbolo D . A dose absorvida é geralmente medida em uma unidade chamada cinza (Gy), que é derivada do sistema SI. Às vezes, a unidade não-SI rad também é usada, predominantemente nos EUA.

dose absorvida - definição

Unidades de dose absorvida:

  • Gray . Uma dose de um cinza é equivalente a uma unidade de energia (joule) depositada em um quilograma de uma substância.
  • RAD . Uma dose de um rad é equivalente à deposição de cem ergs de energia em um grama de qualquer material.

Cinza – Unidade de Dose Absorvida

unidade cinzaUma dose de um cinza é equivalente a uma unidade de energia (joule) depositada em um quilograma de uma substância. Esta unidade foi nomeada em homenagem a Louis Harold Gray , que foi um dos grandes pioneiros em biologia da radiação. Um cinza é uma grande quantidade de dose absorvida. Uma pessoa que absorveu uma dose de 1 Gy no corpo inteiro absorveu um joule de energia em cada kg de tecido corporal.

As doses absorvidas medidas na indústria (exceto medicina nuclear) geralmente têm doses mais baixas que um cinza, e os seguintes múltiplos são frequentemente usados:

1 mGy (miligray) = 1E-3 Gy

1 µGy (micrograma) = 1E-6 Gy

As conversões das unidades SI para outras unidades são as seguintes:

  • 1 Gy = 100 rad
  • 1 mGy = 100 mrad

O cinza e o rad são unidades físicas. Eles descrevem o efeito físico da radiação incidente (ou seja, a quantidade de energia depositada por kg), mas não nos diz nada sobre as consequências biológicas dessa deposição de energia no tecido vivo.

Exemplos de doses absorvidas em cinzas

Devemos notar que a radiação está à nossa volta. Dentro, ao redor e acima do mundo em que vivemos. É uma força de energia natural que nos rodeia. É uma parte do nosso mundo natural que está aqui desde o nascimento do nosso planeta. Nos pontos a seguir, tentamos expressar enormes faixas de exposição à radiação, que podem ser obtidas de várias fontes.

  • 0,05 µGy – Dormindo ao lado de alguém
  • 0,09 µGy – Morando a 48 quilômetros de uma usina nuclear por um ano
  • 0,1 µGy – Comendo uma banana
  • 0,3 µGy – Morando a 80 quilômetros de uma usina a carvão por um ano
  • 10 µGy – Dose média diária recebida do fundo natural
  • 20 µGy – radiografia de tórax
  • 40 µGy – Um voo de avião de 5 horas
  • 600 µGy – mamografia
  • 1 000 µGy – Limite de dose para membros individuais do público, dose efetiva total por ano
  • 3 650 µGy – Dose média anual recebida do fundo natural
  • 5 800 µGy – Tomografia computadorizada de tórax
  • 10 000 µGy – Dose média anual recebida do ambiente natural em Ramsar, Irã
  • 20 000 µGy – tomografia computadorizada de corpo inteiro
  • 175 000 µGy – Dose anual de radiação natural em uma praia de monazita perto de Guarapari, Brasil.
  • 5 000 000 µGy – Dose que mata um ser humano com um risco de 50% dentro de 30 dias (LD50 / 30), se a dose for recebida por um período muito curto .

Como pode ser visto, doses baixas são comuns na vida cotidiana. Os exemplos anteriores podem ajudar a ilustrar magnitudes relativas. Do ponto de vista das consequências biológicas, é muito importante distinguir entre doses recebidas em períodos curtos e prolongados . Uma “ dose aguda ” é aquela que ocorre por um período curto e finito de tempo, enquanto uma “ dose crônica ””É uma dose que continua por um longo período de tempo, para que seja melhor descrita por uma taxa de dose. Altas doses tendem a matar células, enquanto doses baixas tendem a danificá-las ou alterá-las. Doses baixas espalhadas por longos períodos de tempo não causam problemas imediatos a nenhum órgão do corpo. Os efeitos de baixas doses de radiação ocorrem no nível da célula e os resultados podem não ser observados por muitos anos.

Cálculo da taxa de dose protegida em tons de cinza

Suponha a fonte isotrópica pontual que contém 1,0 Ci de 137 Cs , que tem uma meia-vida de 30,2 anos . Observe que a relação entre a meia-vida e a quantidade de radionuclídeo necessária para gerar uma atividade de um curie é mostrada abaixo. Essa quantidade de material pode ser calculada usando λ, que é a constante de decaimento de determinado nuclídeo:

Curie - Unidade de Atividade

Cerca de 94,6% decai por emissão beta em um isômero nuclear metaestável de bário: bário-137m. O pico principal de fótons de Ba-137m é 662 keV . Para esse cálculo, suponha que todos os decaimentos passem por esse canal.

Calcule a taxa de dose primária do fóton , em cinza por hora (Gy.h -1 ), na superfície externa de uma blindagem de chumbo de 5 cm de espessura. A taxa de dose primária de fótons negligencia todas as partículas secundárias. Suponha que a distância efetiva da fonte do ponto de dose seja 10 cm . Também devemos assumir que o ponto de dose é um tecido mole, que pode ser razoavelmente simulado pela água e usamos o coeficiente de absorção de energia em massa da água.

Veja também: Atenuação de raios gama

Veja também: Blindagem de raios gama

Solução:

A taxa de dose primária de fótons é atenuada exponencialmente , e a taxa de dose de fótons primários, levando em consideração o escudo, é dada por:

cálculo da taxa de dose

Como pode ser visto, não consideramos o acúmulo de radiação secundária. Se partículas secundárias forem produzidas ou se a radiação primária mudar sua energia ou direção, a atenuação efetiva será muito menor. Essa suposição geralmente subestima a taxa de dose verdadeira, especialmente para blindagens espessas e quando o ponto de dose está próximo à superfície da blindagem, mas essa suposição simplifica todos os cálculos. Nesse caso, a taxa real de dose (com o acúmulo de radiação secundária) será mais de duas vezes maior.

Para calcular a taxa de dose absorvida , precisamos usar a fórmula:

  • k = 5,76 x 10 -7
  • S = 3,7 x 10 10 s -1
  • E = 0,662 MeV
  • μ t / ρ = 0,0326 cm 2 / g (os valores estão disponíveis no NIST)
  • μ = 1,289 cm -1 (os valores estão disponíveis no NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

A taxa de dose absorvida resultante em cinza por hora é então:

taxa de dose absorvida - cinza - cálculo

Se queremos dar conta do acúmulo de radiação secundária, precisamos incluir o fator de acúmulo. A fórmula estendida para a taxa de dose é então:

taxa de dose absorvida - cinza

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é o cálculo da taxa de dose protegida em Sieverts – Definição

Calcule a taxa de dose primária de fóton, em peneira por hora (Sv.h-1), na superfície externa de uma blindagem de chumbo com 5 cm de espessura. Suponha que esse campo de radiação externa penetre uniformemente por todo o corpo. Dosimetria de Radiação

sievert - radiaçãoNa proteção contra radiação, o sievert é uma unidade derivada de dose equivalente e dose efetiva. O sievert representa o efeito biológico equivalente ao depósito de um joule de energia de raios gama em um quilograma de tecido humano. A unidade de sievert é importante na proteção contra radiação e recebeu o nome do cientista sueco Rolf Sievert, que fez muitos dos primeiros trabalhos sobre dosimetria em terapia de radiação.

Cálculo da taxa de dose protegida em Sieverts

Suponha a fonte isotrópica pontual que contém 1,0 Ci de 137 Cs , que tem uma meia-vida de 30,2 anos . Observe que a relação entre a meia-vida e a quantidade de radionuclídeo necessária para gerar uma atividade de um curie é mostrada abaixo. Essa quantidade de material pode ser calculada usando λ, que é a constante de decaimento de determinado nuclídeo:

Curie - Unidade de Atividade

Aproximadamente 94,6% decai por emissão beta em um isômero nuclear metaestável de bário: bário-137m. O pico principal de fótons de Ba-137m é 662 keV . Para esse cálculo, suponha que todos os decaimentos passem por esse canal.

Calcule a taxa de dose primária do fóton , em cinza por hora (Gy.h -1 ), na superfície externa de uma blindagem de chumbo de 5 cm de espessura. Em seguida, calcule a taxa de dose equivalente . Suponha que esse campo de radiação externa penetre uniformemente por todo o corpo. A taxa de dose primária de fótons negligencia todas as partículas secundárias. Suponha que a distância efetiva da fonte do ponto de dose seja 10 cm . Também devemos assumir que o ponto de dose é um tecido mole, que pode ser razoavelmente simulado pela água e usamos o coeficiente de absorção de energia em massa da água.

Veja também: Atenuação de raios gama

Veja também: Blindagem de raios gama

Solução:

A taxa de dose primária de fótons é atenuada exponencialmente , e a taxa de dose de fótons primários, levando em consideração o escudo, é dada por:

cálculo da taxa de dose

Como pode ser visto, não consideramos o acúmulo de radiação secundária. Se partículas secundárias forem produzidas ou se a radiação primária mudar sua energia ou direção, a atenuação efetiva será muito menor. Essa suposição geralmente subestima a taxa de dose verdadeira, especialmente para blindagens espessas e quando o ponto de dose está próximo à superfície da blindagem, mas essa suposição simplifica todos os cálculos. Nesse caso, a taxa real de dose (com o acúmulo de radiação secundária) será mais de duas vezes maior.

Para calcular a taxa de dose absorvida , precisamos usar a fórmula:

  • k = 5,76 x 10 -7
  • S = 3,7 x 10 10 s -1
  • E = 0,662 MeV
  • μ t / ρ =  0,0326 cm 2 / g (os valores estão disponíveis no NIST)
  • μ = 1,289 cm -1 (os valores estão disponíveis no NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

A taxa de dose absorvida resultante em cinza por hora é então:

taxa de dose absorvida - cinza - cálculo

Como o fator de ponderação da radiação para os raios gama é igual a um e assumimos o campo uniforme da radiação, podemos calcular diretamente a taxa de dose equivalente a partir da taxa de dose absorvida como:

dose equivalente - sievert - cálculo

Se queremos dar conta do acúmulo de radiação secundária, precisamos incluir o fator de acúmulo. A fórmula estendida para a taxa de dose é então:

taxa de dose absorvida - cinza

 

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é Sievert – Grey – Becquerel – Conversão – Cálculo – Definição

Mas qual é a relação entre becquerels (radioatividade), cinzas (dose absorvida) e sieverts (dose equivalente)? Este artigo mostra como converter e calcular essas quantidades. Dosimetria de Radiação

sievert - radiaçãoNa proteção contra radiação, o sievert é uma unidade derivada de dose equivalente e dose efetiva. O sievert representa o efeito biológico equivalente ao depósito de um joule de energia de raios gama em um quilograma de tecido humano. Mas qual é a relação entre becquerels (radioatividade) e sieverts (dose equivalente)?

Nos capítulos anteriores, discutimos a radioatividade e a intensidade de uma fonte radioativa, medida geralmente em becquerels . Mas qualquer fonte radioativa não representa risco biológico , desde que isolada do ambiente. No entanto, quando pessoas ou outro sistema (também não biológico) são expostos à radiação, a energia é depositada no material e a dose de radiação é fornecida.

Portanto, é muito importante distinguir entre a radioatividade de uma fonte radioativa e a dose de radiação que pode resultar da fonte. Geralmente, a dose de radiação depende dos seguintes fatores em relação à fonte radioativa:

  • Atividade. A atividade da fonte influencia diretamente a dose de radiação depositada no material.
  • Tipo de radiação . Cada tipo de radiação interage com a matéria de uma maneira diferente . Por exemplo, partículas carregadas com altas energias podem ionizar diretamente átomos. Por outro lado, partículas eletricamente neutras interagem apenas indiretamente, mas também podem transferir parte ou todas as suas energias para o assunto.
  • Distância. A quantidade de exposição à radiação depende da distância da fonte de radiação. Da mesma forma que o calor de um incêndio, se você estiver muito próximo, a intensidade da radiação de calor é alta e você pode se queimar. Se você estiver na distância certa, você pode suportar sem problemas e, além disso, é confortável. Se você estiver muito longe da fonte de calor, a insuficiência de calor também poderá prejudicá-lo. Essa analogia, em certo sentido, pode ser aplicada à radiação também de fontes de radiação.
  • Tempo. A quantidade de exposição à radiação depende diretamente (linearmente) do tempo que as pessoas passam perto da fonte de radiação.
  • Blindagem. Finalmente, a dose de radiação também depende do material entre a fonte e o objeto. Se a fonte for muito intensa e o tempo ou a distância não fornecerem proteção suficiente contra radiação, a blindagem poderá ser usada.

O perigo de radiação ionizante reside no fato de que a radiação é invisível e não diretamente detectável pelos sentidos humanos. As pessoas não podem ver nem sentir radiação, mas ela deposita energia nas moléculas do corpo. A energia é transferida em pequenas quantidades para cada interação entre a radiação e uma molécula e geralmente existem muitas dessas interações.

Sievert e Gray

Dose absorvida é definida como a quantidade de energia depositada pela radiação ionizante em uma substância. Dose absorvida é dado o símbolo D . A dose absorvida é geralmente medida em uma unidade chamada cinza (Gy), que é derivada do sistema SI. Às vezes, a unidade não-SI rad também é usada, predominantemente nos EUA.

dose absorvida - definição

Para protecção contra as radiações fins, a dose absorvida é calculada a média ao longo de um órgão ou tecido, T, e esta absorvida média dose é ponderado para a qualidade de radiação em termos do factor de ponderação da radiação , W R , para o tipo e a energia da radiação incidente sobre o corpo. O fator de ponderação da radiação é um fator adimensional usado para determinar a dose equivalente da dose absorvida média sobre um tecido ou órgão e baseia-se no tipo de radiação absorvida. A dose ponderada resultante foi designada como a dose equivalente de órgão ou tecido:

dose equivalente - equação - definição

Fatores de ponderação por radiação - corrente - ICRP
Tabela de fatores de ponderação da radiação. Fonte: ICRP Publ. 103: As recomendações de 2007 da Comissão Internacional de Proteção Radiológica

Uma dose equivalente de um Sievert representa a quantidade de dose de radiação equivalente, em termos de dano biológico especificado , a um cinza de raios X ou raios gama . Uma dose de um Sv causada pela radiação gama é equivalente a uma deposição de energia de um joule em um quilograma de tecido. Isso significa que um sievert é equivalente a um cinza de raios gama depositados em certos tecidos. Por outro lado, danos biológica semelhante (uma Sievert) pode ser causado apenas por 1/20 cinza de alfa radiação (devido à alta W R de alfa radiação). Portanto, o sievert não é uma unidade de dose física. Por exemplo, uma dose absorvida de 1 Gy por partículas alfa levará a uma dose equivalente a 20 Sv. Isso pode parecer um paradoxo. Isso implica que a energia do campo de radiação incidente em joules aumentou em um fator de 20, violando as leis de conservação de energia . No entanto, este não é o caso. Sievert é derivado da quantidade física de dose absorvida, mas também leva em consideração a eficácia biológica da radiação, que depende do tipo e energia da radiação. O fator de ponderação da radiação faz com que o crivo não possa ser uma unidade física.

Uma peneira é uma grande quantidade de dose equivalente. Uma pessoa que absorveu uma dose de 1 Sv no corpo inteiro absorveu um joule de energia em cada kg de tecido corporal (no caso de raios gama).

Doses equivalentes  medidas na indústria e na medicina geralmente têm doses mais baixas do que uma peneira, e os seguintes múltiplos são frequentemente usados:

1 mSv (milissegundo) = 1E-3 Sv

1 µSv (microsievert) = 1E-6 Sv

As conversões das unidades SI para outras unidades são as seguintes:

  • 1 Sv = 100 rem
  • 1 mSv = 100 mrem

Fatores de ponderação por radiação – ICRP

Para radiação de fóton e elétron, o fator de ponderação da radiação tem o valor 1 independentemente da energia da radiação e para a radiação alfa o valor 20. Para a radiação de nêutrons, o valor depende da energia e atinge de 5 a 20.

Fatores de ponderação de radiação
Fonte: ICRP, 2003. Efetividade biológica relativa (RBE), fator de qualidade (Q) e fator de ponderação de radiação (wR). Publicação ICRP 92. Ann. ICRP 33 (4).

Em 2007, o ICRP publicou um novo conjunto de fatores de ponderação de radiação (ICRP Publ. 103: As Recomendações de 2007 da Comissão Internacional de Proteção Radiológica). Esses fatores são apresentados abaixo.

Fatores de ponderação por radiação - corrente - ICRP
Fonte: ICRP, 2007. Publ. 103: As recomendações de 2007 da Comissão Internacional de Proteção Radiológica.

Como mostrado na tabela, aw R de 1 é para todas as radiações de baixa LET, ou seja, raios X e raios gama de todas as energias, bem como elétrons e múons. Uma curva suave, considerada uma aproximação, foi ajustada aos w R valores como uma função da energia incidente de neutrões. Note que E n é a energia de nêutrons em MeV.

fator de ponderação por radiação - nêutrons - ICRP
O fator de ponderação de radiação wR para nêutrons introduzido na Publicação 60 (ICRP, 1991) como uma função descontínua da energia de nêutrons (- – -) e a modificação proposta (-).

Assim, por exemplo, uma dose absorvida de 1 Gy por partículas alfa levará a uma dose equivalente a 20 Sv, e estima-se que uma dose equivalente de radiação tenha o mesmo efeito biológico que uma quantidade igual de dose absorvida de raios gama, que é dado um fator de ponderação de 1.

Veja também: Fator da qualidade

Dose eficaz – Sieverts

fator de ponderação tecidual - ICRPA dose eficaz é uma quantidade de dose definida como a soma das doses de tecido equivalente ponderados pelo órgão ICRP (tecido) factores de ponderação, W T , que leva em conta a sensibilidade variando de diferentes órgãos e tecidos para a radiação.

A dose eficaz permite determinar as consequências biológicas da irradiação parcial (não uniforme) para as consequências da irradiação completa. Vários tecidos do corpo reagem à radiação ionizante de diferentes maneiras, de modo que o ICRP atribuiu fatores de sensibilidade a tecidos e órgãos especificados, de modo que o efeito da irradiação parcial possa ser calculado se as regiões irradiadas forem conhecidas.

Na publicação 60, o ICRP definiu a dose efetiva como a soma duplamente ponderada da dose absorvida em todos os órgãos e tecidos do corpo. Os limites de dose são definidos em termos de dose efetiva e aplicam-se ao indivíduo para fins de proteção radiológica, incluindo a avaliação de risco em termos gerais. Matematicamente, a dose efetiva pode ser expressa como:

dose eficaz - definição

 

Exemplos de doses em Sieverts

Devemos notar que a radiação está à nossa volta. Dentro, ao redor e acima do mundo em que vivemos. É uma força de energia natural que nos rodeia. É uma parte do nosso mundo natural que está aqui desde o nascimento do nosso planeta. Nos pontos a seguir, tentamos expressar enormes faixas de exposição à radiação, que podem ser obtidas de várias fontes.

  • 0,05 µSv – Dormindo ao lado de alguém
  • 0,09 µSv – Morando a 48 quilômetros de uma usina nuclear por um ano
  • 0,1 µSv – Comendo uma banana
  • 0,3 µSv – Morando a 80 quilômetros de uma usina a carvão por um ano
  • 10 µSv – Dose diária média recebida do fundo natural
  • 20 µSv – radiografia de tórax
  • 40 µSv – Um voo de avião de 5 horas
  • 600 µSv – mamografia
  • 1 000 µSv – Limite de dose para membros individuais do público, dose efetiva total por ano
  • 3 650 µSv – Dose média anual recebida do fundo natural
  • 5 800 µSv – tomografia computadorizada do tórax
  • 10 000 µSv – Dose média anual recebida do ambiente natural em Ramsar, Irã
  • 20 000 µSv – tomografia computadorizada de corpo inteiro
  • 175 000 µSv – Dose anual de radiação natural em uma praia de monazita perto de Guarapari, Brasil.
  • 5 000 000 µSv – Dose que mata um ser humano com um risco de 50% dentro de 30 dias (LD50 / 30), se a dose for recebida por um período muito curto .

Como pode ser visto, doses baixas são comuns na vida cotidiana. Os exemplos anteriores podem ajudar a ilustrar magnitudes relativas. Do ponto de vista das consequências biológicas, é muito importante distinguir entre doses recebidas em períodos curtos e prolongados . Uma “ dose aguda ” é aquela que ocorre por um período curto e finito de tempo, enquanto uma “ dose crônica ””É uma dose que continua por um longo período de tempo, para que seja melhor descrita por uma taxa de dose. Altas doses tendem a matar células, enquanto doses baixas tendem a danificá-las ou alterá-las. Doses baixas espalhadas por longos períodos de tempo não causam problemas imediatos a nenhum órgão do corpo. Os efeitos de baixas doses de radiação ocorrem no nível da célula e os resultados podem não ser observados por muitos anos.

Cálculo da taxa de dose protegida em Sieverts

Suponha a fonte isotrópica pontual que contém 1,0 Ci de 137 Cs , que tem uma meia-vida de 30,2 anos . Observe que a relação entre a meia-vida e a quantidade de radionuclídeo necessária para gerar uma atividade de um curie é mostrada abaixo. Essa quantidade de material pode ser calculada usando λ, que é a constante de decaimento de determinado nuclídeo:

Curie - Unidade de Atividade

Cerca de 94,6% decai por emissão beta em um isômero nuclear metaestável de bário: bário-137m. O pico principal de fótons de Ba-137m é 662 keV . Para esse cálculo, suponha que todos os decaimentos passem por esse canal.

Calcule a taxa de dose primária do fóton , em cinza por hora (Gy.h -1 ), na superfície externa de uma blindagem de chumbo de 5 cm de espessura. Em seguida, calcule a taxa de dose equivalente . Suponha que esse campo de radiação externa penetre uniformemente por todo o corpo. A taxa de dose primária de fótons negligencia todas as partículas secundárias. Suponha que a distância efetiva da fonte do ponto de dose seja 10 cm . Também devemos assumir que o ponto de dose é um tecido mole, que pode ser razoavelmente simulado pela água e usamos o coeficiente de absorção de energia em massa da água.

Veja também: Atenuação de raios gama

Veja também: Blindagem de raios gama

Solução:

A taxa de dose primária de fótons é atenuada exponencialmente , e a taxa de dose de fótons primários, levando em consideração o escudo, é dada por:

cálculo da taxa de dose

Como pode ser visto, não consideramos o acúmulo de radiação secundária. Se partículas secundárias forem produzidas ou se a radiação primária mudar sua energia ou direção, a atenuação efetiva será muito menor. Essa suposição geralmente subestima a taxa de dose verdadeira, especialmente para blindagens espessas e quando o ponto de dose está próximo à superfície da blindagem, mas essa suposição simplifica todos os cálculos. Nesse caso, a taxa real de dose (com o acúmulo de radiação secundária) será mais de duas vezes maior.

Para calcular a taxa de dose absorvida , precisamos usar a fórmula:

  • k = 5,76 x 10 -7
  • S = 3,7 x 10 10 s -1
  • E = 0,662 MeV
  • μ t / ρ = 0,0326 cm 2 / g (os valores estão disponíveis no NIST)
  • μ = 1,289 cm -1 (os valores estão disponíveis no NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

A taxa de dose absorvida resultante em cinza por hora é então:

taxa de dose absorvida - cinza - cálculo

Como o fator de ponderação da radiação para os raios gama é igual a um e assumimos o campo uniforme da radiação, podemos calcular diretamente a taxa de dose equivalente a partir da taxa de dose absorvida como:

dose equivalente - sievert - cálculo

Se queremos dar conta do acúmulo de radiação secundária, precisamos incluir o fator de acúmulo. A fórmula estendida para a taxa de dose é então:

taxa de dose absorvida - cinza

 

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.