Facebook Instagram Youtube Twitter

Qué es el contador de centelleo – Detector de centelleo – Definición

Un contador de centelleo o detector de centelleo es un detector de radiación que utiliza el efecto conocido como centelleo. El centelleo es un destello de luz producido en un material transparente por el paso de una partícula. Dosimetría de radiación
Scintillation_Counter - Tubo fotomultiplicador
Aparato con un cristal centelleante, fotomultiplicador y componentes de adquisición de datos. Fuente: wikipedia.org Licencia CC BY-SA 3.0

Un contador de centelleo o detector de centelleo es un detector de radiación que utiliza el efecto conocido como centelleo . El centelleo es un destello de luz producido en un material transparente por el paso de una partícula (un electrón, una partícula alfa, un ion o un fotón de alta energía). El centelleo ocurre en el centelleador, que es una parte clave de un detector de centelleo. En general, un detector de centelleo consiste en:

  • Scintillator . Un centelleador genera fotones en respuesta a la radiación incidente.
  • Fotodetector . Un fotodetector sensible (generalmente un tubo fotomultiplicador (PMT), una cámara con dispositivo de carga acoplada (CCD) o un fotodiodo), que convierte la luz en una señal eléctrica y electrónica para procesar esta señal.

El principio básico de funcionamiento implica que la radiación reacciona con un centelleador, que produce una serie de destellos de intensidad variable. La intensidad de los destellos es proporcional a la energía de la radiación. Esta característica es muy importante. Estos contadores son adecuados para medir la energía de la radiación gamma ( espectroscopía gamma ) y, por lo tanto, pueden usarse para identificar isótopos emisores de gamma.

Los contadores de centelleo se usan ampliamente en la protección contra la radiación , el ensayo de materiales radiactivos y la investigación de la física porque pueden realizarse de forma económica pero con buena eficiencia, y pueden medir tanto la intensidad como la energía de la radiación incidente. Los hospitales de todo el mundo tienen cámaras gamma basadas en el efecto de centelleo y, por lo tanto, también se denominan cámaras de centelleo.

Las ventajas de un contador de centelleo son su eficiencia y la alta precisión y tasas de conteo posibles. Estos últimos atributos son consecuencia de la duración extremadamente corta de los destellos de luz, de aproximadamente 10 -9  (centelleadores orgánicos) a 10 -6 (centelleadores inorgánicos) segundos. La intensidad de los destellos y la amplitud del pulso de voltaje de salida son proporcionales a la energía de la radiación . Por lo tanto, los contadores de centelleo pueden usarse para determinar la energía, así como el número, de las partículas excitantes (o fotones gamma). Para la espectrometría gamma, los detectores más comunes incluyen contadores de centelleo de yoduro de sodio (NaI) y detectores de germanio de alta pureza.

Contador de centelleo: principio de funcionamiento

El funcionamiento de los contadores de centelleo se resume en los siguientes puntos:

  • Contador de centelleo: principio de funcionamiento
    Contador de centelleo – Principio de funcionamiento. Fuente: wikipedia.org Licencia: Dominio público

    La radiación ionizante ingresa al centelleador e interactúa con el material del centelleador. Esto hace que los electrones se eleven a un estado excitado .

  • Los átomos excitados del material centelleador desexcitan y emiten rápidamente un fotón en el rango de luz visible (o casi visible). La cantidad es proporcional a la energía depositada por la partícula ionizante. Se dice que el material es fluorescente.
  • Se utilizan tres clases de fósforos:
    • cristales inorgánicos
    • cristales orgánicos,
    • Fósforos de plástico.
  • La luz creada en el centelleador golpea el fotocátodo de un tubo fotomultiplicador , liberando como máximo un fotoelectrón por fotón.
  • Usando un potencial de voltaje, este grupo de electrones primarios se acelera y enfoca electrostáticamente para que golpeen el primer dinodo con suficiente energía para liberar electrones adicionales.
  • Estos electrones secundarios son atraídos y golpean un segundo dinodo liberando más electrones. Este proceso ocurre en el tubo fotomultiplicador.
  • Cada impacto del dinodo posterior libera más electrones, por lo que hay un efecto amplificador de corriente en cada etapa del dinodo. Cada etapa tiene un potencial mayor que el anterior para proporcionar el campo de aceleración.
  • La señal primaria se multiplica y esta amplificación continúa a través de 10 a 12 etapas.
  • En el último dinodo , hay suficientes electrones disponibles para producir un pulso de magnitud suficiente para una mayor amplificación. Este pulso lleva información sobre la energía de la radiación incidente original. El número de tales pulsos por unidad de tiempo también proporciona información sobre la intensidad de la radiación.

Se obtiene un detector de centelleo o un contador de centelleo cuando un centelleador está acoplado a un sensor de luz electrónico como:

  • un tubo fotomultiplicador (PMT),
  • una cámara con dispositivo de carga acoplada (CCD)
  • fotodiodo

Todos estos dispositivos pueden usarse en contadores de centelleo y todos convierten la luz en una señal eléctrica y contienen componentes electrónicos para procesar esta señal. Un tubo fotomultiplicador (PMT) absorbe la luz emitida por el centelleador y la reemite en forma de electrones a través del efecto fotoeléctrico. El PMT ha sido la principal opción para la detección de fotones desde entonces debido al hecho de que tienen una alta eficiencia cuántica y una gran amplificación. Últimamente, sin embargo, los semiconductores han comenzado a competir con el PMT, el fotodiodo, por ejemplo, que tiene una mayor eficiencia cuántica en el rango visible y superior, menor consumo de energía y menor tamaño.

Los fotodiodos de vacío son similares pero no amplifican la señal mientras que los fotodiodos de silicio, por otro lado, detectan los fotones entrantes por la excitación de los portadores de carga directamente en el silicio.

Una serie de cámaras de rayos gamma portátiles para imágenes médicas utilizan detectores basados ​​en scintillator-CCD . En este caso, un centelleador convierte la radiación incidente (rayos X generalmente) en fotones de longitud de onda visibles, que luego pueden ser detectados directamente por la cámara CCD.

Tenga en cuenta que el término eficiencia cuántica (QE) puede aplicarse a la relación incidente de fotón a electrón convertido (IPCE), de un dispositivo fotosensible. La eficiencia cuántica para el fotodiodo es alta (60-80%) en comparación con el PMT (20-30%) que proporciona una mayor resolución energética.

Materiales de centelleo: centelleadores

Los centelleadores son tipos de materiales que proporcionan fotones detectables en la parte visible del espectro de luz, después del paso de una partícula cargada o un fotón. El centelleador consiste en un cristal transparente , generalmente un fósforo, plástico u líquido orgánico que fluoresce cuando es golpeado por radiación ionizante. El centelleador también debe ser transparente a sus propias emisiones de luz y debe tener un tiempo de decaimiento corto. El centelleador también debe estar protegido de toda la luz ambiental para que los fotones externos no empañen los eventos de ionización causados ​​por la radiación incidente. Para lograr esto, a menudo se usa una lámina delgada y opaca, como el mylar aluminizado, aunque debe tener una masa lo suficientemente baja como para minimizar la atenuación indebida de la radiación incidente que se está midiendo.

Existen principalmente dos tipos de centelleadores de uso común en física nuclear y de partículas: centelleadores orgánicos o plásticos y centelleadores inorgánicos o cristalinos.

Centelladores inorgánicos

Cristal de centelleo CsI (Tl)
Cristal de centelleo CsI (Tl). Fuente: wikipedia.de Licencia: CC BY-SA 3.0

Los centelleadores inorgánicos son generalmente cristales cultivados en hornos de alta temperatura. Incluyen yoduro de litio (LiI), yoduro de sodio (NaI) , yoduro de cesio (CsI) y sulfuro de zinc (ZnS). El material de centelleo más utilizado es NaI (Tl) (yoduro de sodio dopado con talio). El yodo proporciona la mayor parte del poder de detención en el yoduro de sodio (ya que tiene un alto Z = 53). Estos centelleadores cristalinos se caracterizan por una alta densidad, un alto número atómico y tiempos de decaimiento de pulso de aproximadamente 1 microsegundo ( ~ 10 -6 segundos) El centelleo en cristales inorgánicos es típicamente más lento que en los orgánicos. Exhiben una alta eficiencia para la detección de rayos gamma y son capaces de manejar altas tasas de conteo. Los cristales inorgánicos se pueden cortar a tamaños pequeños y disponer en una configuración de matriz para proporcionar sensibilidad de posición. Esta característica es ampliamente utilizada en imágenes médicas para detectar rayos X o rayos gamma . Los centelleadores inorgánicos son mejores para detectar rayos gamma y rayos X que los centelleadores orgánicos. Esto se debe a su alta densidad y número atómico que da una alta densidad de electrones. Una desventaja de algunos cristales inorgánicos, por ejemplo, NaI, es su higroscopicidad., una propiedad que requiere que se alojen en un recipiente hermético para protegerlos de la humedad.

Scintillators orgánicos

Los centelleadores orgánicos son tipos de materiales orgánicos que proporcionan fotones detectables en la parte visible del espectro de luz, después del paso de una partícula cargada o un fotón. El mecanismo de centelleo en los materiales orgánicos es bastante diferente del mecanismo en los cristales inorgánicos. En los centelleadores inorgánicos, por ejemplo, NaI, CsI, el centelleo surge debido a la estructura de la red cristalina. El mecanismo de fluorescencia en los materiales orgánicos surge de las transiciones en los niveles de energía de una sola molécula y, por lo tanto, la fluorescencia se puede observar independientemente del estado físico (vapor, líquido, sólido).

En general, los centelleadores orgánicos tienen tiempos de descomposición rápidos (típicamente 10-8 segundos ), mientras que los cristales inorgánicos son generalmente mucho más lentos (~ 10-6 segundos), aunque algunos también tienen componentes rápidos en su respuesta. Hay tres tipos de centelleadores orgánicos:

  • Cristales orgánicos puros . Los cristales orgánicos puros incluyen cristales de antraceno, estilbeno y naftaleno. El tiempo de descomposición de este tipo de fósforo es de aproximadamente 10 nanosegundos. Este tipo de cristal se usa con frecuencia en la detección de partículas beta . Son muy duraderos, pero su respuesta es anisotrópica (lo que estropea la resolución energética cuando la fuente no está colimada), y no pueden mecanizarse fácilmente, ni pueden cultivarse en grandes tamaños. Por lo tanto, no se usan con mucha frecuencia.
  • Soluciones orgánicas líquidas . Las soluciones orgánicas líquidas se producen disolviendo un centelleador orgánico en un disolvente.
  • Centelleadores de plástico . Los fósforos plásticos se hacen mediante la adición de productos químicos de centelleo a una matriz plástica. La constante de descomposición es la más corta de los tres tipos de fósforo, llegando a 1 o 2 nanosegundos. Por lo tanto, los centelleadores de plástico son más apropiados para su uso en entornos de alto flujo y en mediciones de alta tasa de dosis. El plástico tiene un alto contenido de hidrógeno, por lo tanto, es útil para detectores rápidos de neutrones . Se necesita sustancialmente más energía para producir un fotón detectable en un centelleador que un par de iones de electrones a través de la ionización (típicamente por un factor de 10), y debido a que los centelleadores inorgánicos producen más luz que los centelleadores orgánicos, son, por consiguiente, mejores para aplicaciones a bajas energías. .

Tubo fotomultiplicador

Los tubos fotomultiplicadores (PMT) son un dispositivo de detección de fotones que utiliza el efecto fotoeléctrico combinado con una emisión secundaria para convertir la luz en una señal eléctrica. Un fotomultiplicador absorbe la luz emitida por el centelleador y la reemite en forma de electrones a través del efecto fotoeléctrico . El PMT ha sido la principal opción para la detección de fotones desde entonces debido al hecho de que tienen una alta eficiencia cuántica y una gran amplificación.

Componentes del tubo fotomultiplicador

El dispositivo consta de varios componentes y estos componentes se muestran en la figura.

  • Scintillation_Counter - Tubo fotomultiplicador
    Aparato con un cristal centelleante, fotomultiplicador y componentes de adquisición de datos. Fuente: wikipedia.org Licencia CC BY-SA 3.0

    Photocathode . Justo después de una delgada ventana de entrada, hay un fotocatodo, que está hecho de material en el que los electrones de valencia están débilmente unidos y tienen una sección transversal alta para convertir fotones en electrones a través del efecto fotoeléctrico. Por ejemplo, se puede usar Cs 3 Sb (cesio-antimonio). Como resultado, la luz creada en el centelleador golpea el fotocátodo de un tubo fotomultiplicador, liberando como máximo un fotoelectrón por fotón.

  • Dínodos . Usando un potencial de voltaje, este grupo de electrones primarios se acelera y enfoca electrostáticamente para que golpeen el primer dinodo con suficiente energía para liberar electrones adicionales. Hay una serie («etapas») de dinodos hechos de material de función de trabajo relativamente baja. Estos electrodos funcionan a un potencial cada vez mayor (por ejemplo, ~ 100-200 V entre los dinodos). En el dinodo, los electrones se multiplican por la emisión secundaria. El próximo dinodo tiene un voltaje más alto que hace que los electrones liberados del primero aceleren hacia él. En cada dynode se liberan 3-4 electrones por cada electrón incidente, y con 6 a 14 dynodes la ganancia total, o factor de amplificación de electrones, estará en el rango de ~ 10 4 -107 cuando alcanzan el ánodo. Los voltajes de operación típicos están en el rango de 500 a 3000 V. En el dinodo final, hay suficientes electrones disponibles para producir un pulso de magnitud suficiente para una mayor amplificación. Este pulso lleva información sobre la energía de la radiación incidente original. El número de tales pulsos por unidad de tiempo también proporciona información sobre la intensidad de la radiación.

Eficiencia cuántica

La sensibilidad de un fotocatodo generalmente se cita en términos de eficiencia cuántica . En general, el término eficiencia cuántica (QE) puede aplicarse a fotón incidente convertida electrón a ( IPCE ) proporción de un dispositivo fotosensible. La eficiencia cuántica del fotocatodo se define como la probabilidad de conversión de fotones incidentes en una señal eléctrica y se define como:

Eficiencia cuántica - Tubo fotomultiplicador

La eficiencia cuántica de cualquier dispositivo fotosensible es una función importante de la longitud de onda de la luz incidente, y se hace un esfuerzo para que la respuesta espectral del fotocatodo coincida con el espectro de emisión del centelleador en uso. En el tubo fotomultiplicador, la eficiencia cuántica está limitada al 20-30% , pero una eficiencia cuántica promedio sobre el espectro de emisión de un centelleador típico es de aproximadamente 15-20% .

El estándar para la cotización es el número de fotoelectrones por pérdida de energía keV por electrones rápidos en un centelleador de NaI (Tl) . Para la eficiencia cuántica máxima, se producen alrededor de 8 ~ 10 fotoelectrones por cada pérdida de energía keV. Por lo tanto, la pérdida de energía promedio requerida para crear un solo fotoelectrón es ~ 100 eV, que es mucho mayor que los valores en detectores llenos de gas o detectores de semiconductores.

El PMT ha sido la principal opción para la detección de fotones desde entonces debido al hecho de que tienen una alta eficiencia cuántica y una gran amplificación. Últimamente, sin embargo, los semiconductores han comenzado a competir con el PMT, el fotodiodo, por ejemplo, que tiene una mayor eficiencia cuántica en el rango visible y superior, menor consumo de energía y un tamaño más pequeño. La eficiencia cuántica para el fotodiodo es alta (60-80%) en comparación con el PMT (20-30%) que proporciona una mayor resolución energética.

Fotodiodos – Contador de centelleo

Se obtiene un detector de centelleo o un contador de centelleo cuando un centelleador está acoplado a un sensor de luz electrónico como:

  • un tubo fotomultiplicador (PMT),
  • una cámara con dispositivo de carga acoplada (CCD)
  • fotodiodo

Todos estos dispositivos pueden usarse en contadores de centelleo y todos convierten la luz en una señal eléctrica y contienen componentes electrónicos para procesar esta señal. Un fotodiodo es un dispositivo semiconductor que convierte la luz en corriente eléctrica. Este es un dispositivo semiconductor que consiste en una capa delgada de silicio en la que se absorbe la luz y luego se crean portadores de carga libre (electrones y agujeros). Un fotodiodo convencional con mayor frecuencia se refiere a un diodo PIN. PIN significa que los lados dopados p y n están separados por una región i agotada. Los electrones y los agujeros se recogen en el ánodo y el cátodo del diodo. Esto da como resultado una fotocorriente que es la salida del diodo. Sin embargo, la carga no se amplifica, por lo que la amplitud de la señal de salida es pequeña. Esto hace que el fotodiodo sea sensible al ruido electrónico. Por otra parte,

Detección de radiación alfa, beta y gamma utilizando el contador de centelleo

Los contadores de centelleo se utilizan para medir la radiación en una variedad de aplicaciones que incluyen medidores de medición de radiación de mano, monitoreo personal y ambiental de contaminación radiactiva , imágenes médicas, ensayos radiométricos, seguridad nuclear y seguridad de plantas nucleares. Son ampliamente utilizados porque pueden fabricarse de manera económica pero con buena eficiencia, y pueden medir tanto la intensidad como la energía de la radiación incidente.

Los contadores de centelleo se pueden usar para detectar la radiación alfa , beta y gamma . Se pueden usar también para la detección de neutrones . Para estos fines, se utilizan diferentes centelleadores:

  • Partículas Alfa e Iones Pesados . Debido al alto poder ionizante de los iones pesados, los contadores de centelleo generalmente no son ideales para la detección de iones pesados. Para energías iguales, un protón producirá de 1/4 a 1/2 de la luz de un electrón, mientras que las partículas alfa producirán solo aproximadamente 1/10 de la luz. Cuando sea necesario, los cristales inorgánicos, por ejemplo, CsI (Tl), ZnS (Ag) (típicamente utilizados en láminas delgadas como monitores de partículas α), deberían preferirse a los materiales orgánicos. Pure CsI es un material centelleante rápido y denso con un rendimiento de luz relativamente bajo que aumenta significativamente con el enfriamiento. Los inconvenientes de CsI son un gradiente de alta temperatura y una ligera higroscopicidad.
  • Las partículas beta . Para la detección de partículas beta, se pueden usar centelleadores orgánicos. Los cristales orgánicos puros incluyen cristales de antraceno, estilbeno y naftaleno. El tiempo de descomposición de este tipo de fósforo es de aproximadamente 10 nanosegundos. Este tipo de cristal se usa con frecuencia en la detección de partículas beta. Los centelleadores orgánicos , que tienen una Z más baja que los cristales inorgánicos, son los más adecuados para la detección de partículas beta de baja energía (<10 MeV).
  • Rayos Gamma . Los materiales High-Z son los más adecuados como centelleadores para la detección de rayos gamma. El material de centelleo más utilizado es NaI (Tl) (yoduro de sodio dopado con talio). El yodo proporciona la mayor parte del poder de detención en el yoduro de sodio (ya que tiene un alto Z = 53). Estos centelleadores cristalinos se caracterizan por una alta densidad, un alto número atómico y tiempos de decaimiento de pulso de aproximadamente 1 microsegundo (~ 10 -6segundo). El centelleo en cristales inorgánicos es típicamente más lento que en los orgánicos. Exhiben una alta eficiencia para la detección de rayos gamma y son capaces de manejar altas tasas de conteo. Los cristales inorgánicos se pueden cortar a tamaños pequeños y disponer en una configuración de matriz para proporcionar sensibilidad de posición. Esta característica es ampliamente utilizada en imágenes médicas para detectar rayos X o rayos gamma. Los centelleadores inorgánicos son mejores para detectar rayos gamma y rayos X. Esto se debe a su alta densidad y número atómico que da una alta densidad de electrones.
  • Neutrones . Como los neutrones son partículas eléctricamente neutras, están sujetos principalmente a fuertes fuerzas nucleares pero no a fuerzas eléctricas. Por lo tanto, los neutrones no son directamente ionizantes y generalmente tienen que convertirse en partículas cargadas antes de que puedan detectarse. En general, cada tipo de detector de neutrones debe estar equipado con un convertidor (para convertir la radiación de neutrones en radiación detectable común) y uno de los detectores de radiación convencionales (detector de centelleo, detector gaseoso, detector de semiconductores, etc.).  Los neutrones rápidos (> 0.5 MeV) dependen principalmente del protón de retroceso en las reacciones (n, p). Materiales ricos en hidrógeno, por ejemplo centelleadores de plástico., por lo tanto, son los más adecuados para su detección. Los neutrones térmicos dependen de reacciones nucleares, como las reacciones (n, γ) o (n, α), para producir ionización. Por lo tanto, materiales como LiI (Eu) o silicatos de vidrio son particularmente adecuados para la detección de neutrones térmicos.

Espectroscopía gamma con contador de centelleo

Ver también: espectroscopía gamma con contador de centelleo

Ver también: espectroscopía gamma

En general, la espectroscopía gamma es el estudio de los espectros de energía de las fuentes de rayos gamma, como en la industria nuclear, la investigación geoquímica y la astrofísica. Los espectroscopios, o espectrómetros, son dispositivos sofisticados diseñados para medir la distribución de potencia espectral de una fuente. La radiación incidente genera una señal que permite determinar la energía de la partícula incidente.

Espectro del detector HPGe
Figura: Leyenda: Comparación de los espectros de NaI (Tl) y HPGe para cobalto-60. Fuente: Radioisótopos y Metodología de Radiación I, II. Soo Hyun Byun, Notas de la conferencia. Universidad McMaster, Canadá.

La mayoría de las fuentes radiactivas producen rayos gamma , que son de diversas energías e intensidades. Los rayos gamma acompañan frecuentemente  la emisión  de  radiación alfa  y  beta . Cuando estas emisiones se detectan y analizan con un sistema de espectroscopia, se puede producir un espectro de energía de rayos gamma . Rayos gamma de la desintegración radiactivaestán en el rango de energía de unos pocos keV a ~ 8 MeV, correspondiente a los niveles de energía típicos en núcleos con vidas razonablemente largas. Como se escribió, se producen por la descomposición de los núcleos a medida que pasan de un estado de alta energía a un estado más bajo. Un análisis detallado de este espectro se usa típicamente para determinar la identidad y la cantidad de emisores gamma presentes en una muestra, y es una herramienta vital en el ensayo radiométrico. El espectro gamma es característico de los nucleidos emisores de gamma contenidos en la fuente.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

Qué es el tubo Geiger-Müller – Cámara Geiger – Definición

Un tubo Geiger-Müller es una parte clave del contador Geiger. El tubo Geiger-Müller es el elemento sensor que detecta la radiación. Hay dos tipos principales de construcción de tubos Geiger. Dosimetría de radiación
Detector de radiación ionizante - Tubo Geiger
Detector de radiación ionizante – Tubo Geiger

Un contador Geiger consiste en un tubo Geiger-Müller (el elemento sensor que detecta la radiación) y la electrónica de procesamiento, que muestra el resultado.

El contador Geiger puede detectar radiaciones ionizantes como partículas alfa  y  beta ,  neutrones y  rayos gamma  utilizando el efecto de ionización producido en un tubo Geiger-Müller, que da nombre al instrumento. El voltaje del detector se ajusta de modo que las condiciones correspondan a la región Geiger-Mueller .

Visualización de la propagación de avalanchas de Townsend mediante fotones UV. Fuente: wikpedia.org Licencia: CC BY-SA 3.0

En esta región, el voltaje es lo suficientemente alto como para proporcionar a los electrones primarios suficiente aceleración y energía para que puedan ionizar átomos adicionales del medio. Estos iones secundarios (amplificación de gas) formados también se aceleran causando un efecto conocido como avalanchas de Townsend . Estas avalanchas pueden ser activadas y propagadas por fotones emitidos por átomos excitados en la avalancha original. Como estos fotones no se ven afectados por el campo eléctrico, pueden interactuar lejos (por ejemplo, lateralmente al eje) de la avalancha primaria, todo el tubo Geiger participa en el proceso.

Estas avalanchas producen una señal fuerte (el factor de amplificación puede alcanzar aproximadamente 10 10 ) con forma y altura independientemente de la ionización primaria y la energía del fotón detectado. El pulso de voltaje en este caso sería grande y fácilmente detectable ≈ 1.6 V. La ventaja técnica de un contador Geiger es su simplicidad de construcción y su insensibilidad a pequeñas fluctuaciones de voltaje. Es muy útil para la medición general de la radiación nuclear, pero tiene dos desventajas importantes.

  • Detectores de ionización gaseosa - Regiones
    Este diagrama muestra el número de pares de iones generados en el detector lleno de gas, que varía según el voltaje aplicado para la radiación incidente constante. Los voltajes pueden variar ampliamente dependiendo de la geometría del detector y el tipo de gas y la presión. Esta figura indica esquemáticamente las diferentes regiones de voltaje para los rayos alfa, beta y gamma. Hay seis regiones operativas principales, donde tres (ionización, proporcional y región de Geiger-Mueller) son útiles para detectar la radiación ionizante. Las partículas alfa son más ionizantes que las partículas beta y los rayos gamma, por lo que se produce más corriente en la región de la cámara de iones por alfa que beta y gamma, pero las partículas no se pueden diferenciar. Se produce más corriente en la región de conteo proporcional por partículas alfa que beta, pero por la naturaleza del conteo proporcional es posible diferenciar pulsos alfa, beta y gamma. En la región de Geiger, no hay diferenciación de alfa y beta, ya que cualquier evento de ionización en el gas da como resultado la misma salida de corriente.

    Dado que la altura del pulso es independiente del tipo y la energía de la radiación, la discriminación no es posible. No hay información alguna sobre la naturaleza de la ionización que causó el pulso.

  • Debido a la gran avalancha inducida por cualquier ionización, un contador Geiger tarda mucho tiempo (aproximadamente 1 ms) en recuperarse entre pulsos sucesivos. Por lo tanto, los contadores Geiger no pueden medir altas tasas de radiación debido al » tiempo muerto » del tubo.

Hay una diferencia sutil, pero importante, entre las cámaras de ionización y los contadores Geiger . Una cámara de ionización producirá una corriente que es proporcional al número de electrones recolectados por segundo (no se produce amplificación). Esta corriente se promedia y se usa para conducir una lectura de pantalla en Bq o μSv / h. Los contadores proporcionales y Geiger no funcionan de esta manera. En cambio, amplifican cada una de las explosiones individuales de ionización para que cada evento ionizante se detecte por separado. Por lo tanto, miden el número de eventos ionizantes (por eso se les llama contadores). Si bien las cámaras de ionización pueden funcionar en modo de corriente o pulso, los contadores proporcionales o los contadores Geiger casi siempre se usan enmodo de pulso . A diferencia de los contadores proporcionales, los contadores GM se utilizan principalmente para instrumentación portátil debido a su sensibilidad, circuito de conteo simple y capacidad para detectar radiación de bajo nivel.

Región Geiger-Mueller

Visualización de la propagación de avalanchas de Townsend mediante fotones UV. Fuente: wikpedia.org Licencia: CC BY-SA 3.0

En la región de Geiger-Mueller , el voltaje y, por lo tanto, el campo eléctrico es tan fuerte que pueden ocurrir avalanchas secundarias. Estas avalanchas pueden ser activadas y propagadas por fotones emitidos por átomos excitados en la avalancha original. Como estos fotones no se ven afectados por el campo eléctrico, pueden interactuar lejos (por ejemplo, lateralmente al eje) de la avalancha primaria, todo el tubo Geiger participa en el proceso. Una señal fuerte (el factor de amplificación puede alcanzar aproximadamente 10 10) es producida por estas avalanchas con forma y altura independientemente de la ionización primaria y la energía del fotón detectado. Los detectores, que funcionan en la región de Geiger-Mueller, son capaces de detectar rayos gamma, y ​​también de todo tipo de partículas cargadas, que pueden ingresar al detector. Estos detectores se conocen como  contadores Geiger . La principal ventaja de estos instrumentos es que generalmente no requieren ningún amplificador de señal. Dado que los iones positivos no se alejan de la región de avalancha, una nube de iones cargada positivamente perturba el campo eléctrico y termina el proceso de avalancha. En la práctica, la terminación de la avalancha se mejora mediante el uso de » enfriamiento ««Técnicas. A diferencia de los contadores proporcionales, los contadores Geiger no pueden distinguir la energía o incluso la partícula de radiación incidente, ya que la señal de salida es independiente de la cantidad y el tipo de ionización original.

Principio básico de los contadores Geiger

Detector de radiación ionizante - esquema básico
Los detectores de radiación ionizante constan de dos partes que generalmente están conectadas. La primera parte consiste en un material sensible, que consiste en un compuesto que experimenta cambios cuando se expone a la radiación. El otro componente es un dispositivo que convierte estos cambios en señales medibles.

El contador Geiger tiene un cátodo y un ánodo que se mantienen a alto voltaje, y el dispositivo se caracteriza por una capacitancia determinada por la geometría de los electrodos. En un contador Geiger, el gas de relleno de la cámara es un gas inerte que se ioniza por radiación incidente, y un gas de enfriamiento de 5 a 10% de un vapor orgánico o un gas halógeno para evitar pulsos espurios al apagar las avalanchas de electrones.

A medida que la radiación ionizante ingresa al gas entre los electrodos, se forma un número finito de pares de iones. En el aire, la energía promedio necesaria para producir un ion es de aproximadamente 34 eV, por lo tanto, una radiación de 1 MeV completamente absorbida en el detector produce aproximadamente 3 x 10 4par de iones El comportamiento de los pares de iones resultantes se ve afectado por el gradiente potencial del campo eléctrico dentro del gas y el tipo y la presión del gas de relleno. Bajo la influencia del campo eléctrico, los iones positivos se moverán hacia el electrodo cargado negativamente (cilindro externo), y los iones negativos (electrones) migrarán hacia el electrodo positivo (cable central). El campo eléctrico en esta región evita que los iones se recombinen con los electrones. En las inmediaciones del cable del ánodo, la intensidad del campo se vuelve lo suficientemente grande como para producir avalanchas de Townsend.. Estas avalanchas pueden ser activadas y propagadas por fotones emitidos por átomos excitados en la avalancha original. Como estos fotones no se ven afectados por el campo eléctrico, pueden interactuar lejos (por ejemplo, lateralmente al eje) de la avalancha primaria, todo el tubo Geiger participa en el proceso. Estas avalanchas producen una señal fuerte (el factor de amplificación puede alcanzar aproximadamente 10 10 ) con forma y altura independientemente de la ionización primaria y la energía del fotón detectado. El alto factor de amplificación del contador Geiger es la principal ventaja sobre la cámara de ionización. El contador Geiger es, por lo tanto, un dispositivo mucho más sensible que otras cámaras. A menudo se usa en la detección de rayos gamma de bajo nivel y partículas beta por este motivo.

Dado que los iones positivos no se alejan de la región de avalancha, una nube de iones cargada positivamente perturba el campo eléctrico y termina el proceso de avalancha. En la práctica, la terminación de la avalancha se mejora mediante el uso de técnicas de «enfriamiento» .

La recolección de todos estos electrones producirá una carga en los electrodos y un pulso eléctrico a través del circuito de detección. Cada pulso corresponde a una interacción de rayos gamma o neutrones. La altura del pulso no es proporcional al número de electrones originales producidos. Por lo tanto, los contadores Geiger no son capaces de identificar partículas y medir la energía (espectroscopía). Dado que el proceso de amplificación de carga mejora en gran medida la relación señal / ruido del detector, la amplificación electrónica posterior generalmente no es necesaria.

Enfriamiento – Tiempo muerto – Contadores Geiger

Tiempo muerto - Detector - Paralizable - No paralizableEn un contador Geiger, el gas de relleno de la cámara es un gas inerte que se ioniza por radiación incidente, y un gas de enfriamiento de 5 a 10% de un vapor orgánico o un gas halógeno para evitar pulsos espurios al apagar las avalanchas de electrones. El contador Geiger no debe dar pulsos espurios, y debe recuperarse rápidamente al estado pasivo, listo para el próximo evento de radiación. El argón y el helio son los gases de relleno más utilizados y permiten la detección de radiación alfa, beta y gamma. Para la detección de neutrones, He-3 y BF 3 (trifluoruro de boro) son los gases más comúnmente empleados.

Sin embargo, por cada electrón recogido en la cámara, queda un ion de gas cargado positivamente. Estos iones de gas son pesados ​​en comparación con un electrón y se mueven mucho más lentamente. Los electrones libres son mucho más livianos que los iones positivos, por lo tanto, son atraídos hacia el electrodo central positivo mucho más rápido que los iones positivos hacia la pared de la cámara. La nube resultante de iones positivos cerca del electrodo conduce a distorsiones en la multiplicación de gases. Finalmente, los iones positivos se alejan del cable central cargado positivamente hacia la pared cargada negativamente y se neutralizan al obtener un electrón. Estos átomos luego regresan a su estado fundamental mediante la emisión de fotones que a su vez producen más ionización y, por lo tanto, descargas secundarias espurias. Los electrones producidos por esta ionización se mueven hacia el cable central y se multiplican en el camino. Este pulso de carga no está relacionado con la radiación que se detectará y puede activar una serie de pulsos. En la práctica, la terminación de la avalancha se mejora mediante el uso de Técnicas de «enfriamiento» .

Las moléculas de gas de enfriamiento tienen una afinidad más débil por los electrones que el gas de la cámara; por lo tanto, los átomos ionizados del gas de la cámara toman fácilmente electrones de las moléculas de gas de enfriamiento. Por lo tanto, las moléculas ionizadas de gas de enfriamiento alcanzan la pared de la cámara en lugar del gas de la cámara. Las moléculas ionizadas del gas de enfriamiento se neutralizan al obtener un electrón, y la energía liberada no causa más ionización, sino que provoca la disociación de la molécula. Este tipo de enfriamiento se conoce como  autoenfriamiento  o  enfriamiento interno , ya que los tubos detienen la descarga sin ayuda externa.

Para los contadores Geiger, el enfriamiento externo, a veces llamado » enfriamiento activo » o » enfriamiento electrónico «, también es una posibilidad. El enfriamiento electrónico utiliza una electrónica de control de alta velocidad simplista para eliminar y volver a aplicar rápidamente el alto voltaje entre los electrodos durante un tiempo fijo después de cada pico de descarga para aumentar la velocidad máxima de conteo y la vida útil del tubo.

Referencia especial: Departamento de Energía, Instrumentación y Control de EE. UU. DOE Fundamentals Handbook, Volumen 2 de 2. Junio ​​de 1992.

Tipos de tubos Geiger-Mueller

Los contadores Geiger se utilizan principalmente para instrumentación portátil debido a su sensibilidad, circuito de conteo simple y capacidad para detectar radiación de bajo nivel. Aunque el uso principal de los contadores Geiger es probablemente en la detección de partículas individuales, también se encuentran en medidores de gamma. Son capaces de detectar casi todos los tipos de radiación, pero hay ligeras diferencias en el tubo Geiger-Mueller. Sin embargo, el tubo Geiger-Müller produce una salida de pulso que es de la misma magnitud para toda la radiación detectada, por lo que un contador Geiger con un tubo de ventana final no puede distinguir entre partículas alfa y beta.

Hay dos tipos principales de construcción de tubos Geiger :

  • Tipo de ventana final . Para que las partículas alfa y beta sean detectadas por los contadores Geiger, deben contar con una ventana delgada . Esta » ventana final » debe ser lo suficientemente delgada para que las partículas alfa y beta puedan penetrar. Sin embargo, una ventana de casi cualquier espesor evitará que una partícula alfa ingrese a la cámara. La ventana generalmente está hecha de mica con una densidad de aproximadamente 1.5 – 2.0 mg / cm 2para permitir que las partículas beta de baja energía (p. ej., del carbono 14) ingresen al detector. La reducción de la eficiencia para alfa se debe al efecto de atenuación de la ventana final, aunque la distancia desde la superficie que se está comprobando también tiene un efecto significativo, e idealmente una fuente de radiación alfa debería estar a menos de 10 mm del detector debido a la atenuación en el aire.
  • Tipo sin ventanas . Los rayos gamma tienen muy pocos problemas para penetrar las paredes metálicas de la cámara. Por lo tanto, los contadores Geiger pueden usarse para detectar radiación gamma y rayos X (tubos de pared delgada) conocidos colectivamente como fotones, y para esto se usa el tubo sin ventanas.
    • Se utiliza un tubo de pared gruesa para la detección de radiación gamma por encima de las energías de aproximadamente 25 KeV, este tipo generalmente tiene un espesor de pared total de aproximadamente 1-2 mm de acero al cromo.
    • Se usa un tubo de pared delgada para fotones de baja energía (rayos X o rayos gamma) y partículas beta de alta energía. La transición del diseño de pared delgada al diseño de pared gruesa tiene lugar en los niveles de energía de 300–400 keV. Por encima de estos niveles se utilizan diseños de paredes gruesas, y por debajo de estos niveles predomina el efecto de ionización de gas directo.

A veces, se prefiere un diseño de «panqueque» del tubo Geiger-Mueller. Este detector es un tubo Geiger plano con una delgada ventana de mica de área más grande. Los tubos Geiger planos como este se conocen como tubos «panqueque». Dichos tubos están equipados con una pantalla de alambre para protegerlos. Este diseño proporciona un área de detección más grande y, por lo tanto, una mayor eficiencia para agilizar la verificación. Sin embargo, la presión de la atmósfera contra la baja presión del gas de relleno limita el tamaño de la ventana debido a la resistencia limitada de la membrana de la ventana.

Detección de neutrones usando el contador Geiger

Como los neutrones son partículas eléctricamente neutras, están sujetos principalmente a fuertes fuerzas nucleares pero no a fuerzas eléctricas. Por lo tanto, los neutrones no son directamente ionizantes y generalmente tienen que convertirse en partículas cargadas antes de que puedan detectarse. En general, cada tipo de detector de neutrones debe estar equipado con un convertidor (para convertir la radiación de neutrones en radiación detectable común) y uno de los detectores de radiación convencionales (detector de centelleo, detector gaseoso, detector de semiconductores, etc.).

No es común, pero los contadores Geiger también pueden usarse para la detección de neutrones. En este caso, el tubo Geiger-Mueller debe tener el interior del tubo recubierto con boro, o el tubo debe contener trifluoruro de boro (BF 3 ) o helio-3 como gas de relleno.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

Qué es el contador Geiger – Detector Geiger-Mueller – Definición

El contador Geiger, también conocido como contador Geiger-Mueller, es un dispositivo eléctrico que detecta varios tipos de radiación ionizante. Este dispositivo lleva el nombre de los dos físicos que inventaron el contador en 1928. Dosimetría de radiación
Detector de radiación ionizante - Tubo Geiger
Detector de radiación ionizante – Tubo Geiger

El contador Geiger , también conocido como contador Geiger-Mueller , es un dispositivo eléctrico que detecta varios tipos de radiación ionizante . Este dispositivo lleva el nombre de los dos físicos que inventaron el contador en 1928. Mueller era estudiante de Hans Geiger.  El contador Geiger es ampliamente utilizado en aplicaciones como dosimetría de radiación, protección radiológica , física experimental y la industria nuclear. Un contador Geiger consiste en un tubo Geiger-Müller (el elemento sensor que detecta la radiación) y la electrónica de procesamiento, que muestra el resultado.

El contador Geiger puede detectar radiaciones ionizantes como partículas alfa  y  beta ,  neutrones y  rayos gamma  utilizando el efecto de ionización producido en un tubo Geiger-Müller, que da nombre al instrumento. El voltaje del detector se ajusta de modo que las condiciones correspondan a la región Geiger-Mueller .

Visualización de la propagación de avalanchas de Townsend mediante fotones UV. Fuente: wikpedia.org Licencia: CC BY-SA 3.0

En esta región, el voltaje es lo suficientemente alto como para proporcionar a los electrones primarios suficiente aceleración y energía para que puedan ionizar átomos adicionales del medio. Estos iones secundarios (amplificación de gas) formados también se aceleran causando un efecto conocido como avalanchas de Townsend . Estas avalanchas pueden ser activadas y propagadas por fotones emitidos por átomos excitados en la avalancha original. Como estos fotones no se ven afectados por el campo eléctrico, pueden interactuar lejos (por ejemplo, lateralmente al eje) de la avalancha primaria, todo el tubo Geiger participa en el proceso.

Estas avalanchas producen una señal fuerte (el factor de amplificación puede alcanzar aproximadamente 10 10 ) con forma y altura independientemente de la ionización primaria y la energía del fotón detectado. El pulso de voltaje en este caso sería grande y fácilmente detectable ≈ 1.6 V. La ventaja técnica de un contador Geiger es su simplicidad de construcción y su insensibilidad a pequeñas fluctuaciones de voltaje. Es muy útil para la medición general de la radiación nuclear, pero tiene dos desventajas importantes.

  • Detectores de ionización gaseosa - Regiones
    Este diagrama muestra el número de pares de iones generados en el detector lleno de gas, que varía según el voltaje aplicado para la radiación incidente constante. Los voltajes pueden variar ampliamente dependiendo de la geometría del detector y el tipo de gas y la presión. Esta figura indica esquemáticamente las diferentes regiones de voltaje para los rayos alfa, beta y gamma. Hay seis regiones operativas principales, donde tres (ionización, proporcional y región de Geiger-Mueller) son útiles para detectar la radiación ionizante. Las partículas alfa son más ionizantes que las partículas beta y los rayos gamma, por lo que se produce más corriente en la región de la cámara de iones por alfa que beta y gamma, pero las partículas no se pueden diferenciar. Se produce más corriente en la región de conteo proporcional por partículas alfa que beta, pero por la naturaleza del conteo proporcional es posible diferenciar pulsos alfa, beta y gamma. En la región de Geiger, no hay diferenciación de alfa y beta, ya que cualquier evento de ionización en el gas da como resultado la misma salida de corriente.

    Dado que la altura del pulso es independiente del tipo y la energía de la radiación, la discriminación no es posible. No hay información alguna sobre la naturaleza de la ionización que causó el pulso.

  • Debido a la gran avalancha inducida por cualquier ionización, un contador Geiger tarda mucho tiempo (aproximadamente 1 ms) en recuperarse entre pulsos sucesivos. Por lo tanto, los contadores Geiger no pueden medir altas tasas de radiación debido al » tiempo muerto » del tubo.

Hay una diferencia sutil, pero importante, entre las cámaras de ionización y los contadores Geiger . Una cámara de ionización producirá una corriente que es proporcional al número de electrones recolectados por segundo (no se produce amplificación). Esta corriente se promedia y se usa para conducir una lectura de pantalla en Bq o μSv / h. Los contadores proporcionales y Geiger no funcionan de esta manera. En cambio, amplifican cada una de las explosiones individuales de ionización para que cada evento ionizante se detecte por separado. Por lo tanto, miden el número de eventos ionizantes (por eso se les llama contadores). Si bien las cámaras de ionización pueden funcionar en modo de corriente o pulso, los contadores proporcionales o los contadores Geiger casi siempre se usan enmodo de pulso . A diferencia de los contadores proporcionales, los contadores GM se utilizan principalmente para instrumentación portátil debido a su sensibilidad, circuito de conteo simple y capacidad para detectar radiación de bajo nivel.

Principio básico de los contadores Geiger

Detector de radiación ionizante - esquema básico
Los detectores de radiación ionizante constan de dos partes que generalmente están conectadas. La primera parte consiste en un material sensible, que consiste en un compuesto que experimenta cambios cuando se expone a la radiación. El otro componente es un dispositivo que convierte estos cambios en señales medibles.

El contador Geiger tiene un cátodo y un ánodo que se mantienen a alto voltaje, y el dispositivo se caracteriza por una capacitancia determinada por la geometría de los electrodos. En un contador Geiger, el gas de relleno de la cámara es un gas inerte que se ioniza por radiación incidente, y un gas de enfriamiento de 5 a 10% de un vapor orgánico o un gas halógeno para evitar pulsos espurios al apagar las avalanchas de electrones.

A medida que la radiación ionizante ingresa al gas entre los electrodos, se forma un número finito de pares de iones. En el aire, la energía promedio necesaria para producir un ion es de aproximadamente 34 eV, por lo tanto, una radiación de 1 MeV completamente absorbida en el detector produce aproximadamente 3 x 10 4par de iones El comportamiento de los pares de iones resultantes se ve afectado por el gradiente potencial del campo eléctrico dentro del gas y el tipo y la presión del gas de relleno. Bajo la influencia del campo eléctrico, los iones positivos se moverán hacia el electrodo cargado negativamente (cilindro externo), y los iones negativos (electrones) migrarán hacia el electrodo positivo (cable central). El campo eléctrico en esta región evita que los iones se recombinen con los electrones. En las inmediaciones del cable del ánodo, la intensidad del campo se vuelve lo suficientemente grande como para producir avalanchas de Townsend.. Estas avalanchas pueden ser activadas y propagadas por fotones emitidos por átomos excitados en la avalancha original. Como estos fotones no se ven afectados por el campo eléctrico, pueden interactuar lejos (por ejemplo, lateralmente al eje) de la avalancha primaria, todo el tubo Geiger participa en el proceso. Estas avalanchas producen una señal fuerte (el factor de amplificación puede alcanzar aproximadamente 10 10 ) con forma y altura independientemente de la ionización primaria y la energía del fotón detectado. El alto factor de amplificación del contador Geiger es la principal ventaja sobre la cámara de ionización. El contador Geiger es, por lo tanto, un dispositivo mucho más sensible que otras cámaras. A menudo se usa en la detección de rayos gamma de bajo nivel y partículas beta por este motivo.

Dado que los iones positivos no se alejan de la región de avalanchas, una nube de iones cargada positivamente perturba el campo eléctrico y termina el proceso de avalancha. En la práctica, la terminación de la avalancha se mejora mediante el uso de técnicas de «enfriamiento» .

La recolección de todos estos electrones producirá una carga en los electrodos y un pulso eléctrico a través del circuito de detección. Cada pulso corresponde a una interacción de rayos gamma o neutrones. La altura del pulso no es proporcional al número de electrones originales producidos. Por lo tanto, los contadores Geiger no son capaces de identificar partículas y medir la energía (espectroscopía). Dado que el proceso de amplificación de carga mejora en gran medida la relación señal / ruido del detector, la amplificación electrónica posterior generalmente no es necesaria.

Enfriamiento – Tiempo muerto – Contadores Geiger

Tiempo muerto - Detector - Paralizable - No paralizableEn un contador Geiger, el gas de relleno de la cámara es un gas inerte que se ioniza por radiación incidente, y un gas de enfriamiento de 5 a 10% de un vapor orgánico o un gas halógeno para evitar pulsos espurios al apagar las avalanchas de electrones. El contador Geiger no debe dar pulsos espurios, y debe recuperarse rápidamente al estado pasivo, listo para el próximo evento de radiación. El argón y el helio son los gases de relleno más utilizados y permiten la detección de radiación alfa, beta y gamma. Para la detección de neutrones, He-3 y BF 3 (trifluoruro de boro) son los gases más comúnmente empleados.

Sin embargo, por cada electrón recogido en la cámara, queda un ion de gas cargado positivamente. Estos iones de gas son pesados ​​en comparación con un electrón y se mueven mucho más lentamente. Los electrones libres son mucho más livianos que los iones positivos, por lo tanto, son atraídos hacia el electrodo central positivo mucho más rápido que los iones positivos hacia la pared de la cámara. La nube resultante de iones positivos cerca del electrodo conduce a distorsiones en la multiplicación de gases. Finalmente, los iones positivos se alejan del cable central cargado positivamente hacia la pared cargada negativamente y se neutralizan al obtener un electrón. Estos átomos luego regresan a su estado fundamental mediante la emisión de fotones que a su vez producen más ionización y, por lo tanto, descargas secundarias espurias. Los electrones producidos por esta ionización se mueven hacia el cable central y se multiplican en el camino. Este pulso de carga no está relacionado con la radiación que se detectará y puede activar una serie de pulsos. En la práctica, la terminación de la avalancha se mejora mediante el uso de Técnicas de «enfriamiento» .

Las moléculas de gas de enfriamiento tienen una afinidad más débil por los electrones que el gas de la cámara; por lo tanto, los átomos ionizados del gas de la cámara toman fácilmente electrones de las moléculas de gas de enfriamiento. Por lo tanto, las moléculas ionizadas de gas de enfriamiento alcanzan la pared de la cámara en lugar del gas de la cámara. Las moléculas ionizadas del gas de enfriamiento se neutralizan al obtener un electrón, y la energía liberada no causa más ionización, sino que provoca la disociación de la molécula. Este tipo de enfriamiento se conoce como  autoenfriamiento  o  enfriamiento interno , ya que los tubos detienen la descarga sin ayuda externa.

Para los contadores Geiger, el enfriamiento externo, a veces llamado » enfriamiento activo » o » enfriamiento electrónico «, también es una posibilidad. El enfriamiento electrónico utiliza una electrónica de control de alta velocidad simplista para eliminar y volver a aplicar rápidamente el alto voltaje entre los electrodos durante un tiempo fijo después de cada pico de descarga para aumentar la velocidad máxima de conteo y la vida útil del tubo.

Referencia especial: Departamento de Energía, Instrumentación y Control de EE. UU. DOE Fundamentals Handbook, Volumen 2 de 2. Junio ​​de 1992.

Detección de radiación alfa, beta y gamma utilizando el contador Geiger-Mueller

Los contadores Geiger se utilizan principalmente para instrumentación portátil debido a su sensibilidad, circuito de conteo simple y capacidad para detectar radiación de bajo nivel. Aunque el uso principal de los contadores Geiger es probablemente en la detección de partículas individuales, también se encuentran en medidores de gamma. Son capaces de detectar casi todos los tipos de radiación, pero hay ligeras diferencias en el tubo Geiger-Mueller. Sin embargo, el tubo Geiger-Müller produce una salida de pulso que es de la misma magnitud para toda la radiación detectada, por lo que un contador Geiger con un tubo de ventana final no puede distinguir entre partículas alfa y beta.

Hay dos tipos principales de construcción de tubos Geiger :

  • Tipo de ventana final . Para que las partículas alfa y beta sean detectadas por los contadores Geiger, deben contar con una ventana delgada . Esta » ventana final » debe ser lo suficientemente delgada para que las partículas alfa y beta puedan penetrar. Sin embargo, una ventana de casi cualquier espesor evitará que una partícula alfa ingrese a la cámara. La ventana generalmente está hecha de mica con una densidad de aproximadamente 1.5 – 2.0 mg / cm 2para permitir que las partículas beta de baja energía (p. ej., del carbono 14) ingresen al detector. La reducción de la eficiencia para alfa se debe al efecto de atenuación de la ventana final, aunque la distancia desde la superficie que se está comprobando también tiene un efecto significativo, e idealmente una fuente de radiación alfa debería estar a menos de 10 mm del detector debido a la atenuación en el aire.
  • Tipo sin ventanas . Los rayos gamma tienen muy pocos problemas para penetrar las paredes metálicas de la cámara. Por lo tanto, los contadores Geiger se pueden usar para detectar radiación gamma y rayos X (tubos de pared delgada) conocidos colectivamente como fotones, y para esto se usa el tubo sin ventanas.
    • Se utiliza un tubo de pared gruesa para la detección de radiación gamma por encima de las energías de aproximadamente 25 KeV, este tipo generalmente tiene un espesor de pared total de aproximadamente 1-2 mm de acero al cromo.
    • Se usa un tubo de pared delgada para fotones de baja energía (rayos X o rayos gamma) y partículas beta de alta energía. La transición del diseño de pared delgada al diseño de pared gruesa tiene lugar en los niveles de energía de 300–400 keV. Por encima de estos niveles se utilizan diseños de paredes gruesas, y por debajo de estos niveles predomina el efecto de ionización de gas directo.

A veces, se prefiere un diseño de «panqueque» del tubo Geiger-Mueller. Este detector es un tubo Geiger plano con una delgada ventana de mica de área más grande. Los tubos Geiger planos como este se conocen como tubos «panqueque». Dichos tubos están equipados con una pantalla de alambre para protegerlos. Este diseño proporciona un área de detección más grande y, por lo tanto, una mayor eficiencia para agilizar la verificación. Sin embargo, la presión de la atmósfera contra la baja presión del gas de relleno limita el tamaño de la ventana debido a la resistencia limitada de la membrana de la ventana.

Detección de neutrones usando el contador Geiger

Como los neutrones son partículas eléctricamente neutras, están sujetos principalmente a fuertes fuerzas nucleares pero no a fuerzas eléctricas. Por lo tanto, los neutrones no son directamente ionizantes y generalmente tienen que convertirse en partículas cargadas antes de que puedan detectarse. En general, cada tipo de detector de neutrones debe estar equipado con un convertidor (para convertir la radiación de neutrones en radiación detectable común) y uno de los detectores de radiación convencionales (detector de centelleo, detector gaseoso, detector de semiconductores, etc.).

No es común, pero los contadores Geiger también pueden usarse para la detección de neutrones. En este caso, el tubo Geiger-Mueller debe tener el interior del tubo recubierto con boro, o el tubo debe contener trifluoruro de boro (BF 3 ) o helio-3 como gas de relleno.

Los neutrones entrantes producen partículas alfa cuando reaccionan con los átomos de boro en el gas detector. La mayoría de las reacciones (n, alfa) de los neutrones térmicos son reacciones 10B (n, alfa) 7Li acompañadas de una emisión gamma de 0.48 MeV .

(n, alfa) reacciones de 10B

Además, el isótopo boro-10 tiene una sección transversal de reacción alta (n, alfa) a lo largo de todo el espectro de energía de neutrones . La partícula alfa causa ionización dentro de la cámara, y los electrones expulsados ​​causan más ionizaciones secundarias.

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es el tipo de semiconductores? Definición

Existen muchos tipos de semiconductores en la naturaleza y otros sintetizados en laboratorios; sin embargo, los más conocidos son silicio (Si) y germanio (Ge). Dosimetría de radiación
detector de tiras de silicio - semiconductores
Detector de tiras de silicona Fuente: micronsemiconductor.co.uk

En general, los semiconductores son materiales, inorgánicos u orgánicos, que tienen la capacidad de controlar su conducción dependiendo de la estructura química, la temperatura, la iluminación y la presencia de dopantes. El nombre semiconductor proviene del hecho de que estos materiales tienen una conductividad eléctrica entre la de un metal, como cobre, oro, etc. y un aislante, como el vidrio. Tienen una brecha de energía inferior a 4eV (aproximadamente 1eV). En física de estado sólido, este intervalo de energía o intervalo de banda es un rango de energía entre la banda de valencia y la banda de conducción.donde los estados electrónicos están prohibidos. A diferencia de los conductores, los electrones en un semiconductor deben obtener energía (p. Ej., De la radiación ionizante) para atravesar el intervalo de banda y alcanzar la banda de conducción. Las propiedades de los semiconductores están determinadas por la brecha de energía entre las bandas de valencia y conducción.

Tipos de semiconductores

Materiales semiconductores

Existen muchos tipos de semiconductores en la naturaleza y otros sintetizados en laboratorios; sin embargo, los más conocidos son silicio (Si) y germanio (Ge).

Tipos de semiconductores:

  • silicio - material semiconductor
    Silicio purificado. Fuente: wikipedia.org Licencia: Dominio público

    Silicio. El silicio es un elemento químico con el número atómico 14, lo que significa que hay 14 protones y 14 electrones en la estructura atómica. El símbolo químico de Silicon es Si . El silicio es un sólido cristalino duro y quebradizo con un brillo metálico azul grisáceo, es un metaloide y semiconductor tetravalente. El silicio se usa principalmente para detectores de partículas cargadas (especialmente para el seguimiento de partículas cargadas) y detectores de rayos X blandos. La gran energía de banda prohibida (Egap = 1.12 eV) nos permite operar el detector a temperatura ambiente, pero se prefiere enfriar para reducir el ruido. Los detectores basados ​​en silicio son muy importantes en la física de alta energía. Dado que los detectores basados ​​en silicio son muy buenos para rastrear partículas cargadas, constituyen una parte sustancial del sistema de detección en el LHC en el CERN.

  • Germanio - semiconductor
    12 gramos de germanio policristalino. Fuente: wikipedia.org Licencia: CC BY 3.0

    Germanio. El germanio es un elemento químico con número atómico 32, lo que significa que hay 32 protones y 32 electrones en la estructura atómica. El símbolo químico del germanio es Ge . El germanio es un metaloide lustroso, duro, de color blanco grisáceo en el grupo de carbono, químicamente similar a su grupo vecino de estaño y silicio. El germanio puro es un semiconductor con una apariencia similar al silicio elemental. El germanio se usa ampliamente para la espectroscopía de rayos gamma. En la espectroscopía gamma, se prefiere el germanio debido a que su número atómico es mucho más alto que el silicio y que aumenta la probabilidad de interacción con los rayos gamma. El germanio se usa más que el silicio para la detección de radiación porque la energía promedio necesaria para crear un par de electrones es 3.6 eV para el silicio y 2.9 eV para el germanio, lo que proporciona a este último una mejor resolución en energía. Por otro lado, el germanio tiene una pequeña energía de banda prohibida ( brecha E = 0.67 eV), que requiere operar el detector a temperaturas criogénicas.

  • Diamante . El diamante es una forma sólida del elemento carbono con sus átomos dispuestos en una estructura cristalina llamada diamante cúbico. Los diamantes también son muy buenos aislantes eléctricos, lo que extrañamente es útil y problemático para los dispositivos eléctricos. El diamante es un semiconductor de banda ancha (Egap = 5.47 eV) con alto potencial como material de dispositivo electrónico en muchos dispositivos. Los detectores de diamantes tienen muchas similitudes con los detectores de silicio, pero se espera que ofrezcan ventajas significativas, en particular una alta dureza de radiación y corrientes de deriva muy bajas.
  • detectores de semiconductores - tabla de parámetrosCdTe y CdZnTe. El telururo de cadmio (CdTe) y el telururo de cadmio y zinc (CdZnTe) han sido considerados como materiales semiconductores prometedores para la detección de rayos X y rayos gamma. El alto número atómico y la alta densidad de estos materiales significan que pueden atenuar efectivamente los rayos X y los rayos gamma con energías superiores a 20 keV que los sensores tradicionales basados ​​en silicio no pueden detectar. Esto aumenta significativamente su eficiencia cuántica en comparación con el silicio. La gran energía de banda prohibida (Egap = 1.44 eV) nos permite operar el detector a temperatura ambiente. Por otro lado, una pérdida considerable de carga en estos detectores produce una resolución de energía reducida.

Semiconductor intrínseco – Semiconductor puro

Un semiconductor intrínseco es un semiconductor completamente puro sin ninguna especie dopante presente. Por lo tanto, los semiconductores intrínsecos también se conocen como semiconductores puros o semiconductores de tipo i.

semiconductores intrínsecosPor lo tanto, el número de portadores de carga a cierta temperatura está determinado por las propiedades del material en lugar de la cantidad de impurezas. Tenga en cuenta que una muestra de 1 cm 3 de germanio puro a 20 ° C contiene aproximadamente 4.2 × 10 22 átomos, pero también contiene aproximadamente 2.5 x 10 13 electrones libres y 2.5 x 10 13 agujeros. Estos portadores de carga se producen por excitación térmica. En semiconductores intrínsecos, la cantidad de electrones excitados y la cantidad de agujeros son iguales: n = p . Los electrones y los agujeros se crean por excitación de electrones de la banda de valencia a la banda de conducción. Un agujero de electrones(a menudo simplemente llamado un agujero) es la falta de un electrón en una posición donde uno podría existir en un átomo o red atómica. Esta igualdad puede ser incluso el caso después de dopaje del semiconductor, aunque solo si está dopado con donantes y aceptadores por igual. En este caso, n = p aún se mantiene, y el semiconductor sigue siendo intrínseco, aunque dopado.

Los semiconductores tienen una brecha de energía inferior a 4eV (aproximadamente 1eV). Las brechas de banda son naturalmente diferentes para diferentes materiales. Por ejemplo, el diamante es un semiconductor de banda ancha (Egap = 5.47 eV) con alto potencial como material de dispositivo electrónico en muchos dispositivos. Por otro lado, el germanio tiene una energía de separación de banda pequeña ( separación E = 0,67 eV), que requiere operar el detector a temperaturas criogénicas. En física del estado sólido, este intervalo de energía o intervalo de banda es un rango de energía entre la banda de valencia y la banda de conducción donde los estados de electrones están prohibidos. A diferencia de los conductores, los electrones en un semiconductor deben obtener energía (por ejemplo, de la radiación ionizante) para atravesar el intervalo de banda y alcanzar la banda de conducción.

Sin embargo, los semiconductores intrínsecos no son muy útiles, ya que no son muy buenos aislantes ni muy buenos conductores. Sin embargo, una característica importante de los semiconductores es que su conductividad se puede aumentar y controlar dopando con impurezas y activando con campos eléctricos. Recuerde, una muestra de 1 cm 3 de germanio puro a 20 ° C contiene aproximadamente 4.2 × 10 22 átomos, pero también contiene aproximadamente 2.5 x 10 13 electrones libres y 2.5 x 10 13 agujeros generados constantemente a partir de energía térmica. La absorción total de un fotón de 1 MeV produce alrededor de 3 x 10 5 pares de electrones . Este valor es menor en comparación con el número total de operadores gratuitos en 1 cm 3Semiconductor intrínseco. Como se puede ver, la relación señal / ruido (S / N) sería mínima. La adición de 0.001% de arsénico (una impureza) dona 10 17 electrones libres adicionales en el mismo volumen y la conductividad eléctrica se incrementa en un factor de 10,000. En material dopado, la relación señal / ruido (S / N) sería aún menor. Debido a que el germanio tiene un intervalo de banda relativamente bajo, estos detectores deben enfriarse para reducir la generación térmica de portadores de carga a un nivel aceptable. De lo contrario, el ruido inducido por la corriente de fuga destruye la resolución energética del detector. El dopaje y la compuerta mueven la banda de conducción o valencia mucho más cerca del nivel de Fermi, y aumentan en gran medida el número de estados parcialmente llenos.

Semiconductores extrínsecos – Semiconductores dopados

Un semiconductor extrínseco , o semiconductor dopado , es un semiconductor que se dopa intencionalmente con el fin de modular sus propiedades eléctricas, ópticas y estructurales. En el caso de detectores de semiconductores de radiación ionizante, el dopaje es la introducción intencional de impurezas en un semiconductor intrínseco con el fin de cambiar sus propiedades eléctricas. Por lo tanto, los semiconductores intrínsecos también se conocen como semiconductores puros o semiconductores de tipo i.

La adición de un pequeño porcentaje de átomos extraños en la red cristalina regular de silicio o germanio produce cambios dramáticos en sus propiedades eléctricas, ya que estos átomos extraños incorporados en la estructura cristalina del semiconductor proporcionan portadores de carga libre (electrones o agujeros de electrones) en el semiconductor. En un semiconductor extrínseco, son estos átomos dopantes extraños en la red cristalina los que proporcionan principalmente los portadores de carga que transportan corriente eléctrica a través del cristal. En general, hay dos tipos de átomos dopantes que dan como resultado dos tipos de semiconductores extrínsecos. Estos dopantes que producen los cambios controlados deseados se clasifican como aceptores o donantes de electrones. y los semiconductores dopados correspondientes se conocen como:

  • Semiconductores de tipo n.
  • Semiconductores tipo p.

Los semiconductores extrínsecos son componentes de muchos dispositivos eléctricos comunes, así como de muchos detectores de radiación ionizante. Para estos fines, un diodo semiconductor (dispositivos que permiten la corriente en una sola dirección) generalmente consta de semiconductores tipo p y tipo n colocados en unión entre sí.

semiconductores de tipo n

extrínseco - semiconductor dopado - tipo n - donanteUn semiconductor extrínseco que ha sido dopado con átomos donadores de electrones se llama semiconductor de tipo n, porque la mayoría de los portadores de carga en el cristal son electrones negativos. Como el silicio es un elemento tetravalente, la estructura cristalina normal contiene 4 enlaces covalentes de cuatro electrones de valencia. En el silicio, los dopantes más comunes son los elementos del grupo III y del grupo V. Los elementos del grupo V (pentavalente) tienen cinco electrones de valencia, lo que les permite actuar como donantes. Eso significa que la adición de estas impurezas pentavalentes como el arsénico, el antimonio o el fósforo contribuye a la formación de electrones libres, lo que aumenta en gran medida la conductividad del semiconductor intrínseco. Por ejemplo, un cristal de silicio dopado con boro (grupo III) crea un semiconductor de tipo p, mientras que un cristal dopado con fósforo (grupo V) da como resultado un semiconductor de tipo n.

Los electrones de conducción están completamente dominados por la cantidad de electrones donadores . Por lo tanto:

El número total de electrones de conducción es aproximadamente igual al número de sitios donantes, n≈N D .

La neutralidad de carga del material semiconductor se mantiene porque los sitios donantes excitados equilibran los electrones de conducción. El resultado neto es que el número de electrones de conducción aumenta, mientras que el número de agujeros se reduce. El desequilibrio de la concentración del portador en las bandas respectivas se expresa por el número absoluto diferente de electrones y agujeros. Los electrones son portadores mayoritarios, mientras que los agujeros son portadores minoritarios en material de tipo n.

 

Semiconductores tipo p

extrínseco - semiconductor dopado - tipo p - aceptadorUn semiconductor extrínseco que ha sido dopado con átomos aceptores de electrones se llama semiconductor de tipo p , porque la mayoría de los portadores de carga en el cristal son agujeros de electrones (portadores de carga positiva). El silicio semiconductor puro es un elemento tetravalente , la estructura cristalina normal contiene 4 enlaces covalentes de cuatro electrones de valencia. En el silicio, los dopantes más comunes son los elementos del grupo III y del grupo V.. Todos los elementos del grupo III (trivalentes) contienen tres electrones de valencia, lo que hace que funcionen como aceptores cuando se usan para dopar silicio. Cuando un átomo aceptor reemplaza a un átomo de silicio tetravalente en el cristal, se crea un estado vacante (un agujero de electrones). Un agujero de electrones (a menudo simplemente llamado agujero) es la falta de un electrón en una posición en la que uno podría existir en un átomo o en una red atómica. Es uno de los dos tipos de portadores de carga responsables de crear corriente eléctrica en materiales semiconductores. Estos agujeros cargados positivamente pueden moverse de un átomo a otro en materiales semiconductores a medida que los electrones abandonan sus posiciones. La adición de impurezas trivalentes como boro , aluminio o galio.a un semiconductor intrínseco crea estos agujeros de electrones positivos en la estructura. Por ejemplo, un cristal de silicio dopado con boro (grupo III) crea un semiconductor de tipo p, mientras que un cristal dopado con fósforo (grupo V) da como resultado un semiconductor de tipo n.

El número de agujeros de electrones está completamente dominado por el número de sitios aceptores. Por lo tanto:

El número total de orificios es aproximadamente igual al número de sitios donantes, p ≈ N A .

La neutralidad de carga de este material semiconductor también se mantiene. El resultado neto es que aumenta el número de agujeros de electrones, mientras que se reduce el número de electrones de conducción. El desequilibrio de la concentración de portadores en las bandas respectivas se expresa por el número absoluto diferente de electrones y agujeros. Los agujeros de electrones son portadores mayoritarios , mientras que los electrones son portadores minoritarios en material tipo p.

La unión PN: unión sesgada inversa

El detector de semiconductores funciona mucho mejor como detector de radiación si se aplica un voltaje externo a través de la unión en la dirección de polarización inversa . La región de agotamiento funcionará como un detector de radiación. Se puede lograr una mejora mediante el uso de un voltaje de polarización inversa a la unión PN para agotar el detector de portadores libres, que es el principio de la mayoría de los detectores de semiconductores. La polarización inversa de una unión aumenta el grosor de la región de agotamiento porque se mejora la diferencia de potencial a través de la unión. Los detectores de germanio tienen una estructura pinen el que la región intrínseca (i) es sensible a la radiación ionizante, particularmente a los rayos X y los rayos gamma. Bajo polarización inversa, un campo eléctrico se extiende a través de la región intrínseca o agotada. En este caso, se aplica voltaje negativo al lado p y positivo al segundo. Los agujeros en la región p son atraídos desde la unión hacia el contacto p y de manera similar para los electrones y el contacto n. Esta carga, que es proporcional a la energía depositada en el detector por el fotón entrante, se convierte en un pulso de voltaje mediante un preamplificador sensible a la carga integral.

Ver también: detectores de germanio, MIRION Technologies. <disponible en: https://www.mirion.com/products/germanium-detectors>.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

Qué es el detector de germanio de alta pureza – HPGe – Definición

Los detectores de germanio de alta pureza (detectores HPGe) son la mejor solución para la espectroscopía precisa de rayos gamma y rayos X. Los detectores HPGe deben funcionar a temperaturas muy bajas de nitrógeno líquido. Dosimetría de radiación
Detector HPGe - Germanio
Detector HPGe con criostato LN2 Fuente: canberra.com

Detectores de germanio de alta pureza ( detectores de HPGe ) son la mejor solución para precisa gamma y espectroscopia de rayos x . En comparación con los detectores de silicio , el germanio es mucho más eficiente que el silicio para la detección de radiación debido a que su número atómico es mucho más alto que el silicio y debido a la menor energía promedio necesaria para crear un par de agujeros de electrones , que es 3.6 eV para silicio y 2.9 eV para germanio Debido a su mayor número atómico, Ge tiene un coeficiente de atenuación lineal mucho más lager, lo que conduce a una ruta libre media más corta. Además, los detectores de silicio no pueden ser más gruesos que unos pocos milímetros, mientras que el germanio puede tener un agotamiento,espesor sensible de centímetros y, por lo tanto, se puede utilizar como detector de absorción total para rayos gamma de hasta pocos MeV.

Antes de que se refinaran las técnicas de purificación actuales, los cristales de germanio no podían producirse con la pureza suficiente para permitir su uso como detectores de espectroscopía. La pureza de un material detector es de suma importancia. La colección de pares de electrones dentro del detector debe hacerse dentro de un tiempo razonablemente corto. Además, no debe haber trampas que puedan evitar que lleguen a los contactos de recolección. Los centros de captura pueden deberse a:

  • Impurezas dentro de la red semiconductora
  • Átomos intersticiales y vacantes dentro de la red debido a defectos estructurales.
  • Atomos intersticiales causados ​​por daño por radiación

Las impurezas en los cristales atrapan electrones y agujeros, arruinando el rendimiento de los detectores. En consecuencia, los cristales de germanio se doparon con iones de litio (Ge (Li)), para producir una región intrínseca en la que los electrones y los agujeros podrían alcanzar los contactos y producir una señal.

Para lograr la máxima eficiencia, los detectores HPGe deben funcionar a temperaturas muy bajas de nitrógeno líquido (-196 ° C), porque a temperaturas ambiente el ruido causado por la excitación térmica es muy alto.

Dado que los detectores HPGe producen la resolución más alta disponible en la actualidad, se utilizan para medir la radiación en una variedad de aplicaciones, incluido el monitoreo del personal y el medio ambiente para detectar contaminación radiactiva, aplicaciones médicas, ensayos radiométricos, seguridad nuclear y seguridad de plantas nucleares.

Partes de detectores HPGe

El principal inconveniente de los detectores de germanio es que deben enfriarse a temperaturas de nitrógeno líquido. Debido a que el germanio tiene un intervalo de banda relativamente bajo , estos detectores deben enfriarse para reducir la generación térmica de portadores de carga a un nivel aceptable. De lo contrario, el ruido inducido por la corriente de fuga destruye la resolución energética del detector. Recuerde, la brecha de banda (una distancia entre la valencia y la banda de conducción ) es muy baja para germanio (Egap = 0.67 eV). El enfriamiento a la temperatura del nitrógeno líquido (-195.8 ° C; -320 ° F) reduce las excitaciones térmicas de los electrones de valencia, de modo que solo una interacción de rayos gamma puede dar a un electrón la energía necesaria para cruzar la brecha de banda y alcanzar la banda de conducción.

Por lo tanto, los detectores HPGe generalmente están equipados con un criostato . Los cristales de germanio se mantienen dentro de un recipiente de metal evacuado denominado soporte del detector . El soporte del detector, así como la «tapa final», son delgados para evitar la atenuación de los fotones de baja energía. El soporte generalmente está hecho de aluminio y típicamente tiene un grosor de 1 mm. La tapa final, también está generalmente hecha de aluminio. El cristal HPGe dentro del soporte está en contacto térmico con una varilla de metal llamada dedo frío . El dedo frío transfiere calor desde el conjunto del detector al depósito de nitrógeno líquido (LN 2 ). La combinación del recipiente de metal al vacío, el dedo frío y el matraz Dewarpara el nitrógeno líquido el criógeno se llama criostato. El preamplificador detector de germanio normalmente se incluye como parte del paquete de criostato. Dado que el preamplificador debe ubicarse lo más cerca posible para que se pueda minimizar la capacitancia general, el preamplificador se instala conjuntamente. Las etapas de entrada del preamplificador también se enfrían. El dedo frío se extiende más allá del límite de vacío del criostato en un matraz Dewar que está lleno de nitrógeno líquido. La inmersión del dedo frío en el nitrógeno líquido mantiene el cristal HPGe a una temperatura baja constante. La temperatura del nitrógeno líquido se mantiene constante a 77 K (-195.8 ° C; -320 ° F) por ebullición lenta del líquido, lo que resulta en la evolución del gas nitrógeno. Dependiendo del tamaño y el diseño, el tiempo de retención de los matraces de vacío varía de unas pocas horas a unas pocas semanas.

El enfriamiento con nitrógeno líquido es inconveniente, ya que el detector requiere horas para enfriarse a la temperatura de funcionamiento antes de que pueda usarse, y no se puede permitir que se caliente durante el uso. Los detectores HPGe pueden calentarse a temperatura ambiente cuando no están en uso . Cabe señalar que los cristales de Ge (Li) nunca podrían calentarse, ya que el litio saldría del cristal y arruinaría el detector.

Se hicieron disponibles sistemas comerciales que utilizan técnicas avanzadas de refrigeración (por ejemplo, un  enfriador de tubo de pulso ) para eliminar la necesidad de enfriamiento con nitrógeno líquido. Este sistema de enfriamiento es un criostato alimentado eléctricamente, completamente libre de LN 2 .

Ver también: detectores de germanio, MIRION Technologies. <disponible en: https://www.mirion.com/products/germanium-detectors>.

Detector HPGe – Principio de funcionamiento

El funcionamiento de los detectores de semiconductores se resume en los siguientes puntos:

  • La radiación ionizante ingresa al volumen sensible ( cristal de germanio ) del detector e interactúa con el material semiconductor.
  • El fotón de alta energía que pasa a través del detector ioniza los átomos de semiconductores, produciendo los pares de electrones . El número de pares de electrones es proporcional a la energía de la radiación al semiconductor. Como resultado, se transfieren varios electrones desde la banda de valencia a la banda de conducción, y se crea un número igual de agujeros en la banda de valencia.
  • Dado que el germanio puede tener un espesor de centímetros agotado y sensible, pueden absorber totalmente fotones de alta energía  (hasta pocos MeV).
  • Bajo la influencia de un campo eléctrico, los electrones y los agujeros viajan a los electrodos, donde producen un pulso que se puede medir en un circuito externo.
  • Este pulso lleva información sobre la energía de la radiación incidente original. El número de tales pulsos por unidad de tiempo también proporciona información sobre la intensidad de la radiación.

En todos los casos, un fotón deposita una parte de su energía a lo largo de su trayectoria y puede ser absorbido totalmente. La absorción total de un fotón de 1 MeV produce alrededor de 3 x 10 5 pares de electrones. Este valor es menor en comparación con el número total de portadores libres en un semiconductor intrínseco de 1 cm 3 . La partícula que pasa a través del detector ioniza los átomos del semiconductor, produciendo los pares de electrones. Pero en los detectores basados ​​en germanio a temperatura ambiente, la excitación térmica es dominante. Es causada por impurezas, irregularidades en la estructura reticular o por dopante . Depende mucho de la brecha E(una distancia entre la valencia y la banda de conducción), que es muy baja para germanio (Egap = 0,67 eV). Dado que la excitación térmica produce el ruido del detector, se requiere enfriamiento activo para algunos tipos de semiconductores (por ejemplo, germanio).

Germanio - semiconductorTenga en cuenta que una muestra de 1 cm 3 de germanio puro a 20 ° C contiene aproximadamente 4.2 × 10 22 átomos, pero también contiene aproximadamente 2.5 x 10 13 electrones libres y 2.5 x 10 13 agujeros generados constantemente por la energía térmica. Como se puede ver, la relación señal / ruido (S / N) sería mínima (compárela con 3 x 10 5 pares de electrones). La adición de 0.001% de arsénico (una impureza) dona un extra de 10 17electrones libres en el mismo volumen y la conductividad eléctrica se incrementa en un factor de 10,000. En material dopado, la relación señal / ruido (S / N) sería aún menor. Debido a que el germanio tiene un intervalo de banda relativamente bajo, estos detectores deben enfriarse para reducir la generación térmica de los portadores de carga (por lo tanto, invertir la corriente de fuga) a un nivel aceptable. De lo contrario, el ruido inducido por la corriente de fuga destruye la resolución energética del detector.

Unión sesgada inversa

El detector de semiconductores funciona mucho mejor como detector de radiación si se aplica un voltaje externo a través de la unión en la dirección de polarización inversa . La región de agotamiento funcionará como un detector de radiación. Se puede lograr una mejora mediante el uso de un voltaje de polarización inversa a la unión PNpara agotar el detector de portadores libres, que es el principio de la mayoría de los detectores de semiconductores. La polarización inversa de una unión aumenta el grosor de la región de agotamiento porque se mejora la diferencia de potencial a través de la unión. Los detectores de germanio tienen una estructura de clavijas en la que la región intrínseca (i) es sensible a la radiación ionizante, particularmente los rayos X y los rayos gamma. Bajo polarización inversa, un campo eléctrico se extiende a través de la región intrínseca o agotada. En este caso, se aplica voltaje negativo al lado p y positivo al segundo. Los agujeros en la región p son atraídos desde la unión hacia el contacto p y de manera similar para los electrones y el contacto n. Esta carga, que es proporcional a la energía depositada en el detector por el fotón entrante,

Ver también: detectores de germanio, MIRION Technologies. <disponible en: https://www.mirion.com/products/germanium-detectors>.

Aplicación de detectores de germanio – espectroscopía gamma

Como se escribió, el estudio y análisis de los espectros de rayos gamma para uso científico y técnico se llama espectroscopía gamma, y ​​los espectrómetros de rayos gamma son los instrumentos que observan y recopilan dichos datos. Un espectrómetro de rayos gamma (GRS) es un dispositivo sofisticado para medir la distribución de energía de la radiación gamma. Para la medición de rayos gamma por encima de varios cientos de keV, hay dos categorías de detectores de gran importancia,  centelleadores inorgánicos como NaI (Tl)  y  detectores de semiconductores.. En los artículos anteriores, describimos la espectroscopía gamma utilizando un detector de centelleo, que consiste en un cristal centelleador adecuado, un tubo fotomultiplicador y un circuito para medir la altura de los pulsos producidos por el fotomultiplicador. Las ventajas de un contador de centelleo son su eficiencia (gran tamaño y alta densidad) y las altas tasas de precisión y conteo que son posibles. Debido al alto número atómico de yodo, una gran cantidad de todas las interacciones dará como resultado la absorción completa de la energía de los rayos gamma, por lo que la fracción de la foto será alta.

Espectro del detector HPGe
Figura: Leyenda: Comparación de los espectros de NaI (Tl) y HPGe para cobalto-60. Fuente: Radioisótopos y Metodología de Radiación I, II. Soo Hyun Byun, Notas de la conferencia. Universidad McMaster, Canadá.

Pero si  se requiere una  resolución energética perfecta , tenemos que usar  un detector basado en germanio , como el  detector HPGe . Los detectores de semiconductores basados ​​en germanio se usan más comúnmente cuando se requiere una muy buena resolución de energía, especialmente para  la espectroscopía gamma , así como  la espectroscopía de rayos X. En la espectroscopía gamma, se prefiere el germanio debido a que su número atómico es mucho más alto que el silicio y que aumenta la probabilidad de interacción con los rayos gamma. Además, el germanio tiene una energía promedio menor necesaria para crear un par de electrones, que es 3.6 eV para silicio y 2.9 eV para germanio. Esto también proporciona a este último una mejor resolución en energía. El FWHM (ancho completo a la mitad máximo) para detectores de germanio es una función de la energía. Para un fotón de 1.3 MeV, el FWHM es 2.1 keV, que es muy bajo.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

Qué es el detector de germanio – Principio de funcionamiento – Definición

Detector de germanio – Principio de funcionamiento. El funcionamiento de los detectores de semiconductores se resume en los siguientes puntos: la radiación ionizante entra en el volumen sensible (cristal de germanio) …… Dosimetría de radiación
Detector HPGe - Germanio
Detector HPGe con criostato LN2 Fuente: canberra.com

Los detectores de semiconductores basados ​​en germanio se usan más comúnmente cuando se requiere una muy buena resolución de energía , especialmente para la espectroscopía gamma , así como la espectroscopía de rayos X. En la espectroscopía gamma, se prefiere el germanio debido a que su número atómico es mucho más alto que el silicio y que aumenta la probabilidad de interacción con los rayos gamma. Además, el germanio tiene una energía media más baja necesaria para crear un par de electrones, que es 3.6 eV para silicio y 2.9 eV para germanio. Esto también proporciona a este último una mejor resolución en energía. Por otro lado, para lograr la máxima eficiencia, los detectores deben funcionar a temperaturas muy bajas de nitrógeno líquido (-196 ° C), porque a temperaturas ambiente el ruido causado por la excitación térmica es muy alto.

Detector de germanio – Principio de funcionamiento

El funcionamiento de los detectores de semiconductores se resume en los siguientes puntos:

  • La radiación ionizante ingresa al volumen sensible ( cristal de germanio ) del detector e interactúa con el material semiconductor.
  • El fotón de alta energía que pasa a través del detector ioniza los átomos de los semiconductores, produciendo los pares de electrones . El número de pares de electrones es proporcional a la energía de la radiación al semiconductor. Como resultado, se transfieren varios electrones desde la banda de valencia a la banda de conducción, y se crea un número igual de agujeros en la banda de valencia.
  • Dado que el germanio puede tener un espesor de centímetros agotado y sensible, pueden absorber fotones de alta energía totalmente  (hasta pocos MeV).
  • Bajo la influencia de un campo eléctrico, los electrones y los agujeros viajan a los electrodos, donde producen un pulso que se puede medir en un circuito externo.
  • Este pulso lleva información sobre la energía de la radiación incidente original. El número de tales pulsos por unidad de tiempo también proporciona información sobre la intensidad de la radiación.

En todos los casos, un fotón deposita una parte de su energía a lo largo de su trayectoria y puede ser absorbido totalmente. La absorción total de un fotón de 1 MeV produce alrededor de 3 x 10 5 pares de electrones. Este valor es menor en comparación con el número total de portadores libres en un semiconductor intrínseco de 1 cm 3 . La partícula que pasa a través del detector ioniza los átomos del semiconductor, produciendo los pares de electrones. Pero en los detectores basados ​​en germanio a temperatura ambiente, la excitación térmica es dominante. Es causada por impurezas, irregularidades en la estructura reticular o por dopante . Depende mucho de la brecha E(una distancia entre la valencia y la banda de conducción), que es muy baja para germanio (Egap = 0,67 eV). Dado que la excitación térmica produce el ruido del detector, se requiere enfriamiento activo para algunos tipos de semiconductores (por ejemplo, germanio).

Germanio - semiconductorTenga en cuenta que una muestra de 1 cm 3 de germanio puro a 20 ° C contiene aproximadamente 4.2 × 10 22 átomos, pero también contiene aproximadamente 2.5 x 10 13 electrones libres y 2.5 x 10 13 agujeros generados constantemente a partir de energía térmica. Como se puede ver, la relación señal / ruido (S / N) sería mínima (compárela con 3 x 10 5 pares de electrones). La adición de 0.001% de arsénico (una impureza) dona un extra de 10 17electrones libres en el mismo volumen y la conductividad eléctrica se incrementa en un factor de 10,000. En material dopado, la relación señal / ruido (S / N) sería aún menor. Debido a que el germanio tiene un intervalo de banda relativamente bajo, estos detectores deben enfriarse para reducir la generación térmica de portadores de carga (por lo tanto, invertir la corriente de fuga) a un nivel aceptable. De lo contrario, el ruido inducido por la corriente de fuga destruye la resolución energética del detector.

 

Aplicación de detectores de germanio – espectroscopía gamma

Como se escribió, el estudio y análisis de los espectros de rayos gamma para uso científico y técnico se llama espectroscopía gamma, y ​​los espectrómetros de rayos gamma son los instrumentos que observan y recopilan dichos datos. Un espectrómetro de rayos gamma (GRS) es un dispositivo sofisticado para medir la distribución de energía de la radiación gamma. Para la medición de rayos gamma por encima de varios cientos de keV, hay dos categorías de detectores de gran importancia,  centelleadores inorgánicos como NaI (Tl)  y  detectores de semiconductores.. En los artículos anteriores, describimos la espectroscopía gamma utilizando un detector de centelleo, que consiste en un cristal centelleador adecuado, un tubo fotomultiplicador y un circuito para medir la altura de los pulsos producidos por el fotomultiplicador. Las ventajas de un contador de centelleo son su eficiencia (gran tamaño y alta densidad) y las altas tasas de precisión y conteo que son posibles. Debido al alto número atómico de yodo, una gran cantidad de todas las interacciones dará como resultado la absorción completa de la energía de los rayos gamma, por lo que la fracción de la foto será alta.

Espectro del detector HPGe
Figura: Leyenda: Comparación de los espectros de NaI (Tl) y HPGe para cobalto-60. Fuente: Radioisótopos y Metodología de Radiación I, II. Soo Hyun Byun, Notas de la conferencia. Universidad McMaster, Canadá.

Pero si  se requiere una  resolución energética perfecta , tenemos que usar  un detector basado en germanio , como el  detector HPGe . Los detectores de semiconductores basados ​​en germanio se usan más comúnmente cuando se requiere una muy buena resolución de energía, especialmente para  la espectroscopía gamma , así como  la espectroscopía de rayos X. En la espectroscopía gamma, se prefiere el germanio debido a que su número atómico es mucho más alto que el silicio y que aumenta la probabilidad de interacción con los rayos gamma. Además, el germanio tiene una energía promedio menor necesaria para crear un par de electrones, que es 3.6 eV para silicio y 2.9 eV para germanio. Esto también proporciona a este último una mejor resolución en energía. El FWHM (ancho completo a la mitad máximo) para detectores de germanio es una función de la energía. Para un fotón de 1.3 MeV, el FWHM es 2.1 keV, que es muy bajo.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

Qué es el material semiconductor – Semiconductor puro y dopado – Definición

Existen muchos materiales semiconductores en la naturaleza y otros sintetizados en laboratorios. Pure Semiconductor vs Doped Semiconductor. Los más conocidos son silicio (Si) y germanio (Ge). Dosimetría de radiación
detector de tiras de silicio - semiconductores
Detector de tiras de silicona Fuente: micronsemiconductor.co.uk

En general, los semiconductores son materiales, inorgánicos u orgánicos, que tienen la capacidad de controlar su conducción dependiendo de la estructura química, la temperatura, la iluminación y la presencia de dopantes. El nombre semiconductor proviene del hecho de que estos materiales tienen una conductividad eléctrica entre la de un metal, como cobre, oro, etc. y un aislante, como el vidrio. Tienen una brecha de energía inferior a 4eV (aproximadamente 1eV). En física de estado sólido, este intervalo de energía o intervalo de banda es un rango de energía entre la banda de valencia y la banda de conducción.donde los estados electrónicos están prohibidos. A diferencia de los conductores, los electrones en un semiconductor deben obtener energía (p. Ej., De la radiación ionizante) para atravesar el intervalo de banda y alcanzar la banda de conducción. Las propiedades de los semiconductores están determinadas por la brecha de energía entre las bandas de valencia y conducción.

Materiales semiconductores

Existen muchos tipos de semiconductores en la naturaleza y otros sintetizados en laboratorios; sin embargo, los más conocidos son silicio (Si) y germanio (Ge).

Tipos de semiconductores:

  • silicio - material semiconductor
    Silicio purificado. Fuente: wikipedia.org Licencia: Dominio público

    Silicio. El silicio es un elemento químico con el número atómico 14, lo que significa que hay 14 protones y 14 electrones en la estructura atómica. El símbolo químico de Silicon es Si . El silicio es un sólido cristalino duro y quebradizo con un brillo metálico azul grisáceo, es un metaloide y semiconductor tetravalente. El silicio se usa principalmente para detectores de partículas cargadas (especialmente para el seguimiento de partículas cargadas) y detectores de rayos X blandos. La gran energía de banda prohibida (Egap = 1.12 eV) nos permite operar el detector a temperatura ambiente, pero se prefiere enfriar para reducir el ruido. Los detectores basados ​​en silicio son muy importantes en la física de alta energía. Dado que los detectores basados ​​en silicio son muy buenos para rastrear partículas cargadas, constituyen una parte sustancial del sistema de detección en el LHC en el CERN.

  • Germanio - semiconductor
    12 gramos de germanio policristalino. Fuente: wikipedia.org Licencia: CC BY 3.0

    Germanio. El germanio es un elemento químico con número atómico 32, lo que significa que hay 32 protones y 32 electrones en la estructura atómica. El símbolo químico del germanio es Ge . El germanio es un metaloide lustroso, duro, de color blanco grisáceo en el grupo de carbono, químicamente similar a su grupo vecino de estaño y silicio. El germanio puro es un semiconductor con una apariencia similar al silicio elemental. El germanio se usa ampliamente para la espectroscopía de rayos gamma. En la espectroscopía gamma, se prefiere el germanio debido a que su número atómico es mucho más alto que el silicio y que aumenta la probabilidad de interacción con los rayos gamma. El germanio se usa más que el silicio para la detección de radiación porque la energía promedio necesaria para crear un par de electrones es 3.6 eV para el silicio y 2.9 eV para el germanio, lo que proporciona a este último una mejor resolución en energía. Por otro lado, el germanio tiene una pequeña energía de banda prohibida ( brecha E = 0.67 eV), que requiere operar el detector a temperaturas criogénicas.

  • Diamante . El diamante es una forma sólida del elemento carbono con sus átomos dispuestos en una estructura cristalina llamada diamante cúbico. Los diamantes también son muy buenos aislantes eléctricos, lo que extrañamente es útil y problemático para los dispositivos eléctricos. El diamante es un semiconductor de banda ancha (Egap = 5.47 eV) con alto potencial como material de dispositivo electrónico en muchos dispositivos. Los detectores de diamantes tienen muchas similitudes con los detectores de silicio, pero se espera que ofrezcan ventajas significativas, en particular una alta dureza de radiación y corrientes de deriva muy bajas.
  • detectores de semiconductores - tabla de parámetrosCdTe y CdZnTe. El telururo de cadmio (CdTe) y el telururo de cadmio y zinc (CdZnTe) han sido considerados como materiales semiconductores prometedores para la detección de rayos X y rayos gamma. El alto número atómico y la alta densidad de estos materiales significan que pueden atenuar efectivamente los rayos X y los rayos gamma con energías superiores a 20 keV que los sensores tradicionales basados ​​en silicio no pueden detectar. Esto aumenta significativamente su eficiencia cuántica en comparación con el silicio. La gran energía de banda prohibida (Egap = 1.44 eV) nos permite operar el detector a temperatura ambiente. Por otro lado, una pérdida considerable de carga en estos detectores produce una resolución de energía reducida.

Semiconductor puro

Un semiconductor intrínseco es un semiconductor completamente puro sin ninguna especie dopante presente. Por lo tanto, los semiconductores intrínsecos también se conocen como semiconductores puros o semiconductores de tipo i.

semiconductores intrínsecosPor lo tanto, el número de portadores de carga a cierta temperatura está determinado por las propiedades del material en lugar de la cantidad de impurezas. Tenga en cuenta que una muestra de 1 cm 3 de germanio puro a 20 ° C contiene aproximadamente 4.2 × 10 22 átomos, pero también contiene aproximadamente 2.5 x 10 13 electrones libres y 2.5 x 10 13 agujeros. Estos portadores de carga se producen por excitación térmica. En semiconductores intrínsecos, la cantidad de electrones excitados y la cantidad de agujeros son iguales: n = p . Los electrones y los agujeros se crean por excitación de electrones de la banda de valencia a la banda de conducción. Un agujero de electrones(a menudo simplemente llamado un agujero) es la falta de un electrón en una posición donde uno podría existir en un átomo o red atómica. Esta igualdad puede ser incluso el caso después de dopaje del semiconductor, aunque solo si está dopado con donantes y aceptadores por igual. En este caso, n = p aún se mantiene, y el semiconductor sigue siendo intrínseco, aunque dopado.

Los semiconductores tienen una brecha de energía inferior a 4eV (aproximadamente 1eV). Las brechas de banda son naturalmente diferentes para diferentes materiales. Por ejemplo, el diamante es un semiconductor de banda ancha (Egap = 5.47 eV) con alto potencial como material de dispositivo electrónico en muchos dispositivos. Por otro lado, el germanio tiene una energía de separación de banda pequeña ( separación E = 0,67 eV), que requiere operar el detector a temperaturas criogénicas. En física del estado sólido, este intervalo de energía o intervalo de banda es un rango de energía entre la banda de valencia y la banda de conducción donde los estados de electrones están prohibidos. A diferencia de los conductores, los electrones en un semiconductor deben obtener energía (por ejemplo, de la radiación ionizante) para atravesar el intervalo de banda y alcanzar la banda de conducción.

Sin embargo, los semiconductores intrínsecos no son muy útiles, ya que no son muy buenos aislantes ni muy buenos conductores. Sin embargo, una característica importante de los semiconductores es que su conductividad se puede aumentar y controlar dopando con impurezas y activando con campos eléctricos. Recuerde, una muestra de 1 cm 3 de germanio puro a 20 ° C contiene aproximadamente 4.2 × 10 22 átomos, pero también contiene aproximadamente 2.5 x 10 13 electrones libres y 2.5 x 10 13 agujeros generados constantemente a partir de energía térmica. La absorción total de un fotón de 1 MeV produce alrededor de 3 x 10 5 pares de electrones . Este valor es menor en comparación con el número total de operadores gratuitos en 1 cm 3Semiconductor intrínseco. Como se puede ver, la relación señal / ruido (S / N) sería mínima. La adición de 0.001% de arsénico (una impureza) dona 10 17 electrones libres adicionales en el mismo volumen y la conductividad eléctrica se incrementa en un factor de 10,000. En material dopado, la relación señal / ruido (S / N) sería aún menor. Debido a que el germanio tiene un intervalo de banda relativamente bajo, estos detectores deben enfriarse para reducir la generación térmica de portadores de carga a un nivel aceptable. De lo contrario, el ruido inducido por la corriente de fuga destruye la resolución energética del detector. El dopaje y la compuerta mueven la banda de conducción o valencia mucho más cerca del nivel de Fermi, y aumentan en gran medida el número de estados parcialmente llenos.

Semiconductores Dopados

Un semiconductor extrínseco , o semiconductor dopado , es un semiconductor que se dopa intencionalmente con el fin de modular sus propiedades eléctricas, ópticas y estructurales. En el caso de detectores de semiconductores de radiación ionizante, el dopaje es la introducción intencional de impurezas en un semiconductor intrínseco con el fin de cambiar sus propiedades eléctricas. Por lo tanto, los semiconductores intrínsecos también se conocen como semiconductores puros o semiconductores de tipo i.

La adición de un pequeño porcentaje de átomos extraños en la red cristalina regular de silicio o germanio produce cambios dramáticos en sus propiedades eléctricas, ya que estos átomos extraños incorporados en la estructura cristalina del semiconductor proporcionan portadores de carga libre (electrones o agujeros de electrones) en el semiconductor. En un semiconductor extrínseco, son estos átomos dopantes extraños en la red cristalina los que proporcionan principalmente los portadores de carga que transportan corriente eléctrica a través del cristal. En general, hay dos tipos de átomos dopantes que dan como resultado dos tipos de semiconductores extrínsecos. Estos dopantes que producen los cambios controlados deseados se clasifican como aceptores o donantes de electrones. y los semiconductores dopados correspondientes se conocen como:

Los semiconductores extrínsecos son componentes de muchos dispositivos eléctricos comunes, así como de muchos detectores de radiación ionizante. Para estos fines, un diodo semiconductor (dispositivos que permiten la corriente en una sola dirección) generalmente consta de semiconductores tipo p y tipo n colocados en unión entre sí.

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es el detector de semiconductores basado en germanio? – Definición

Los detectores de semiconductores basados ​​en germanio se usan con mayor frecuencia cuando se requiere una muy buena resolución de energía, especialmente para la espectroscopía gamma, así como la espectroscopía de rayos X. Dosimetría de radiación

Detectores de semiconductores basados ​​en germanio

Detector HPGe - Germanio
Detector HPGe con criostato LN2 Fuente: canberra.com

Los detectores de semiconductores basados ​​en germanio se usan más comúnmente cuando se requiere una muy buena resolución de energía , especialmente para la espectroscopía gamma, así como la espectroscopía de rayos x. En la espectroscopía gamma, se prefiere el germanio debido a que su número atómico es mucho más alto que el silicio y que aumenta la probabilidad de interacción con los rayos gamma. Además, el germanio tiene una energía media más baja necesaria para crear un par de electrones, que es 3.6 eV para silicio y 2.9 eV para germanio. Esto también proporciona a este último una mejor resolución en energía. Un semiconductor de germanio grande, limpio y casi perfecto es ideal como contador de radiactividad. Sin embargo, es difícil y costoso hacer cristales grandes con suficiente pureza. Si bien los detectores basados ​​en silicio no pueden ser más gruesos que unos pocos milímetros, el germanio puede tener un espesor de centímetros agotado y sensible y, por lo tanto, puede usarse como un detector de absorción total para rayos gamma de hasta pocos MeV.

Por otro lado, para lograr la máxima eficiencia, los detectores deben funcionar a temperaturas muy bajas de nitrógeno líquido (-196 ° C), porque a temperaturas ambiente el ruido causado por la excitación térmica es muy alto.

Dado que los detectores de germanio producen la resolución más alta disponible en la actualidad, se utilizan para medir la radiación en una variedad de aplicaciones, incluido el monitoreo del personal y el medio ambiente para detectar contaminación radiactiva, aplicaciones médicas, ensayos radiométricos, seguridad nuclear y seguridad de plantas nucleares.

Detector de germanio – Principio de funcionamiento

El funcionamiento de los detectores de semiconductores se resume en los siguientes puntos:

  • La radiación ionizante ingresa al volumen sensible ( cristal de germanio ) del detector e interactúa con el material semiconductor.
  • El fotón de alta energía que pasa a través del detector ioniza los átomos de los semiconductores, produciendo los pares de electrones . El número de pares de electrones es proporcional a la energía de la radiación al semiconductor. Como resultado, se transfieren varios electrones desde la banda de valencia a la banda de conducción, y se crea un número igual de agujeros en la banda de valencia.
  • Dado que el germanio puede tener un espesor de centímetros agotado y sensible, pueden absorber fotones de alta energía totalmente  (hasta pocos MeV).
  • Bajo la influencia de un campo eléctrico, los electrones y los agujeros viajan a los electrodos, donde producen un pulso que se puede medir en un circuito externo.
  • Este pulso lleva información sobre la energía de la radiación incidente original. El número de tales pulsos por unidad de tiempo también proporciona información sobre la intensidad de la radiación.

En todos los casos, un fotón deposita una parte de su energía a lo largo de su trayectoria y puede ser absorbido totalmente. La absorción total de un fotón de 1 MeV produce alrededor de 3 x 10 5 pares de electrones. Este valor es menor en comparación con el número total de portadores libres en un semiconductor intrínseco de 1 cm 3 . La partícula que pasa a través del detector ioniza los átomos del semiconductor, produciendo los pares de electrones. Pero en los detectores basados ​​en germanio a temperatura ambiente, la excitación térmica es dominante. Es causada por impurezas, irregularidades en la estructura reticular o por dopante . Depende mucho de la brecha E(una distancia entre la valencia y la banda de conducción), que es muy baja para germanio (Egap = 0,67 eV). Dado que la excitación térmica produce el ruido del detector, se requiere enfriamiento activo para algunos tipos de semiconductores (por ejemplo, germanio).

Germanio - semiconductorTenga en cuenta que una muestra de 1 cm 3 de germanio puro a 20 ° C contiene aproximadamente 4.2 × 10 22 átomos, pero también contiene aproximadamente 2.5 x 10 13 electrones libres y 2.5 x 10 13 agujeros generados constantemente por la energía térmica. Como se puede ver, la relación señal / ruido (S / N) sería mínima (compárela con 3 x 10 5 pares de electrones). La adición de 0.001% de arsénico (una impureza) dona un extra de 10 17electrones libres en el mismo volumen y la conductividad eléctrica se incrementa en un factor de 10,000. En material dopado, la relación señal / ruido (S / N) sería aún menor. Debido a que el germanio tiene un intervalo de banda relativamente bajo, estos detectores deben enfriarse para reducir la generación térmica de los portadores de carga (por lo tanto, invertir la corriente de fuga) a un nivel aceptable. De lo contrario, el ruido inducido por la corriente de fuga destruye la resolución energética del detector.

Unión sesgada inversa

El detector de semiconductores funciona mucho mejor como detector de radiación si se aplica un voltaje externo a través de la unión en la dirección de polarización inversa . La región de agotamiento funcionará como un detector de radiación. Se puede lograr una mejora mediante el uso de un voltaje de polarización inversa a la unión PNpara agotar el detector de portadores libres, que es el principio de la mayoría de los detectores de semiconductores. La polarización inversa de una unión aumenta el grosor de la región de agotamiento porque se mejora la diferencia de potencial a través de la unión. Los detectores de germanio tienen una estructura de clavijas en la que la región intrínseca (i) es sensible a la radiación ionizante, particularmente los rayos X y los rayos gamma. Bajo polarización inversa, un campo eléctrico se extiende a través de la región intrínseca o agotada. En este caso, se aplica voltaje negativo al lado p y positivo al segundo. Los agujeros en la región p son atraídos desde la unión hacia el contacto p y de manera similar para los electrones y el contacto n. Esta carga, que es proporcional a la energía depositada en el detector por el fotón entrante,

Ver también: detectores de germanio, MIRION Technologies. <disponible en: https://www.mirion.com/products/germanium-detectors>.

Aplicación de detectores de germanio – espectroscopía gamma

Como se escribió, el estudio y análisis de los espectros de rayos gamma para uso científico y técnico se llama espectroscopía gamma, y ​​los espectrómetros de rayos gamma son los instrumentos que observan y recopilan dichos datos. Un espectrómetro de rayos gamma (GRS) es un dispositivo sofisticado para medir la distribución de energía de la radiación gamma. Para la medición de rayos gamma por encima de varios cientos de keV, hay dos categorías de detectores de gran importancia,  centelleadores inorgánicos como NaI (Tl)  y  detectores de semiconductores.. En los artículos anteriores, describimos la espectroscopía gamma utilizando un detector de centelleo, que consiste en un cristal centelleador adecuado, un tubo fotomultiplicador y un circuito para medir la altura de los pulsos producidos por el fotomultiplicador. Las ventajas de un contador de centelleo son su eficiencia (gran tamaño y alta densidad) y las altas tasas de precisión y conteo que son posibles. Debido al alto número atómico de yodo, una gran cantidad de todas las interacciones dará como resultado la absorción completa de la energía de los rayos gamma, por lo que la fracción de la foto será alta.

Espectro del detector HPGe
Figura: Leyenda: Comparación de los espectros de NaI (Tl) y HPGe para cobalto-60. Fuente: Radioisótopos y Metodología de Radiación I, II. Soo Hyun Byun, Notas de la conferencia. Universidad McMaster, Canadá.

Pero si  se requiere una  resolución energética perfecta , tenemos que usar  un detector basado en germanio , como el  detector HPGe . Los detectores de semiconductores basados ​​en germanio se usan más comúnmente cuando se requiere una muy buena resolución de energía, especialmente para  la espectroscopía gamma , así como  la espectroscopía de rayos X. En la espectroscopía gamma, se prefiere el germanio debido a que su número atómico es mucho más alto que el silicio y que aumenta la probabilidad de interacción con los rayos gamma. Además, el germanio tiene una energía promedio menor necesaria para crear un par de electrones, que es 3.6 eV para silicio y 2.9 eV para germanio. Esto también proporciona a este último una mejor resolución en energía. El FWHM (ancho completo a la mitad máximo) para detectores de germanio es una función de la energía. Para un fotón de 1.3 MeV, el FWHM es 2.1 keV, que es muy bajo.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la exposición externa? Contaminación externa: definición

Para la exposición externa, no podemos usar algunos de los principios de protección contra la radiación (tiempo, distancia, blindaje). La contaminación externa significa que el material radiactivo se ha depositado en superficies (como ropa, zapatos). Dosimetría de radiación

Captación de dosis externa

La exposición externa es la radiación que proviene del exterior de nuestro cuerpo e interactúa con nosotros. En este caso, analizamos predominantemente la exposición a los rayos gamma, ya que las partículas alfa y beta, en general, no constituyen un riesgo de exposición externa porque las partículas generalmente no pasan a través de la piel. La fuente de radiación puede ser, por ejemplo, un equipo que produce la radiación como un recipiente con materiales radiactivos, o como una máquina de rayos X. En la protección radiológica, hay tres formas de proteger a las personas de las fuentes de radiación externas identificadas:

  • principios de protección radiológica: tiempo, distancia, blindaje
    Principios de protección radiológica: tiempo, distancia, blindaje

    Limitando el tiempo. La cantidad de exposición a la radiación depende directamente (linealmente) del tiempo que las personas pasan cerca de la fuente de radiación. La dosis puede reducirse limitando el tiempo de exposición .

  • Distancia. La cantidad de exposición a la radiación depende de la distancia desde la fuente de radiación. De manera similar al calor de un incendio, si está demasiado cerca, la intensidad de la radiación de calor es alta y puede quemarse. Si está a la distancia correcta, puede resistir allí sin ningún problema y, además, es cómodo. Si está demasiado lejos de la fuente de calor, la insuficiencia de calor también puede dañarlo. Esta analogía, en cierto sentido, puede aplicarse a la radiación también de fuentes de radiación.
  • Blindaje Finalmente, si la fuente es demasiado intensa y el tiempo o la distancia no proporcionan suficiente protección contra la radiación, se debe usar el blindaje. El blindaje contra la radiación generalmente consiste en barreras de plomo, concreto o agua. Hay muchos materiales que se pueden usar para proteger contra la radiación, pero hay muchas situaciones en la protección contra la radiación. Depende en gran medida del tipo de radiación a proteger, su energía y muchos otros parámetros. Por ejemplo, incluso el uranio empobrecido puede usarse como una buena protección contra la radiación gamma, pero por otro lado, el uranio es un blindaje absolutamente inapropiado de la radiación de neutrones .

Como se escribió, es crucial si estamos expuestos a la radiación de fuentes externas o de fuentes internas. Esto es similar a otras sustancias peligrosas. La exposición interna es más peligrosa que la exposición externa, ya que transportamos la fuente de radiación dentro de nuestros cuerpos y no podemos usar ninguno de los principios de protección contra la radiación (tiempo, distancia, protección).

radiación ionizante - símbolo de peligro
radiación ionizante – símbolo de peligro

Exposicion a la radiación

En general, la exposición a la radiación  es una medida de la ionización del  aire  debido a la radiación ionizante de fotones de  alta energía (es decir, rayos X y rayos gamma). La exposición a la radiación  se define como la  suma de las cargas eléctricas  (∆q) en todos los iones de un signo producido  en el aire  cuando todos los electrones, liberados por los fotones en un volumen de aire cuya masa es ∆m, se detienen por completo en el aire.

exposición a la radiación - definición

Exposición a la radiación  se da el símbolo  X . La unidad SI de exposición a la radiación es el coulomb por kilogramo (C / kg), pero en la práctica,  se usa el  roentgen . El  roentgen , abreviado  R , es la unidad de exposición a la radiación. En la definición original,  1 R  significa la cantidad de  rayos X  o  radiación γ  que se requiere para liberar cargas positivas y negativas de una unidad de carga electrostática (esu) en 1 cm³ de aire seco a temperatura y presión estándar (STP).

Dosis absorbida y equivalente

En protección radiológica, el  sievert  es una unidad derivada de  dosis equivalente  y  dosis efectiva.  El sievert representa el efecto biológico equivalente del depósito de un joule de energía de rayos gamma en un kilogramo de tejido humano. La dosis absorbida  se define como la cantidad de energía depositada por la radiación ionizante en una sustancia. La dosis absorbida  se da el símbolo  D . La dosis absorbida generalmente se mide en una unidad llamada  gris  (Gy), que se deriva del sistema SI. En  ocasiones, también se usa la unidad no SI  rad , predominantemente en los EE. UU.

dosis absorbida - definición

Para   fines de protección radiológica , la dosis absorbida se promedia sobre un órgano o tejido, T, y este promedio de dosis absorbida se pondera para la calidad de la radiación en términos del factor de ponderación de la  radiación , w R , para el tipo y la energía de la radiación incidente en el cuerpo. El  factor de ponderación de la radiación  es un factor adimensional utilizado para determinar la dosis equivalente a partir de la dosis absorbida promediada sobre un tejido u órgano y se basa en el tipo de radiación absorbida. La dosis ponderada resultante se designó como la dosis equivalente de órgano o tejido:

dosis equivalente - ecuación - definición

Factores de ponderación de la radiación - actual - ICRP
Tabla de factores de ponderación de la radiación. Fuente: ICRP Publ. 103: Las Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica

Una dosis equivalente de  un Sievert  representa la cantidad de dosis de radiación que es equivalente, en términos de daño biológico especificado  , a  un gris  de  rayos X  o  rayos gamma . Una dosis de  un Sv causada por la radiación gamma es equivalente a una deposición de energía de un julio en un kilogramo de tejido. Eso significa que un sievert es equivalente a un gray de rayos gamma depositados en ciertos tejidos. Por otro lado, un daño biológico similar (un sievert) solo puede ser causado por 1/20 de gray de radiación alfa (debido a un alto w R  de radiación alfa). Por lo tanto, el  sievert no es una unidad de dosis física.. Por ejemplo, una dosis absorbida de 1 Gy por partículas alfa conducirá a una dosis equivalente de 20 Sv. Esto puede parecer una paradoja. Implica que la energía del campo de radiación incidente en julios ha aumentado en un factor de 20, violando así las leyes de  Conservación de energía . Sin embargo, éste no es el caso. Sievert se deriva de la cantidad física absorbida, pero también tiene en cuenta la  efectividad biológica  de la radiación, que depende del tipo de radiación y la energía. El  factor de ponderación de la radiación  hace que el sievert no pueda ser una unidad física.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la dosimetría de radiación? – Definición

La dosimetría de radiación es la medición, el cálculo y la evaluación de las dosis absorbidas y la asignación de esas dosis a los individuos. Dosimetría de radiación
radiación ionizante - símbolo de peligro
Radiación ionizante: símbolo de peligro

La dosimetría de radiación es la medición, el cálculo y la evaluación de las dosis absorbidas y la asignación de esas dosis a los individuos. Es la ciencia y la práctica que intenta relacionar cuantitativamente las medidas específicas realizadas en un campo de radiación con los cambios químicos y / o biológicos que la radiación produciría en un objetivo.

Dado que hay dos tipos de exposición a la radiación, la exposición externa e interna, la dosimetría también se puede clasificar como:

  • Dosimetría Externa . La exposición externa es la radiación que proviene del exterior de nuestro cuerpo e interactúa con nosotros. En este caso, analizamos predominantemente la exposición de los rayos gamma y las partículas beta , ya que las partículas alfa , en general, no constituyen un riesgo de exposición externa porque las partículas generalmente no pasan a través de la piel. Dado que los fotones y beta interactúan a través de fuerzas electromagnéticas y los neutrones interactúan a través de fuerzas nucleares, sus métodos de detección y dosimetría son sustancialmente diferentes. La fuente de radiación puede ser, por ejemplo, un equipo que produce la radiación como un recipiente con materiales radiactivos, o como una máquina de rayos X. La dosimetría externa se basa en mediciones con un dosímetro, o inferido de mediciones realizadas por otros instrumentos de protección radiológica.
  • Detector HPGe - Germanio
    Detector HPGe con criostato LN2, que puede usarse en contadores de cuerpo entero. Fuente: canberra.com

    Dosimetría interna . Si la fuente de radiación está dentro de nuestro cuerpo , decimos que es la exposición interna . La ingesta de material radiactivo puede ocurrir a través de varias vías, como la ingestión de contaminación radiactiva en alimentos o líquidos. La protección contra la exposición interna es más complicada. La mayoría de los radionucleidos le darán mucha más dosis de radiación si de alguna manera pueden ingresar a su cuerpo, de lo que lo harían si permanecieran afuera. La evaluación de dosimetría interna se basa en una variedad de técnicas de monitoreo, bioensayo o imágenes de radiación.

Dosimetría personal

EPD - Dosímetros personales electrónicos
EPD – Dosímetro electrónico personal

La dosimetría personal es una parte clave de la dosimetría de radiación. La dosimetría personal se usa principalmente (pero no exclusivamente) para determinar las dosis a las personas que están expuestas a la radiación relacionada con sus actividades laborales. Estas dosis generalmente se miden mediante dispositivos conocidos como dosímetros. Los dosímetros generalmente registran una dosis, que es la energía de radiación absorbida medida en grises (Gy) o la dosis equivalente medida en sieverts (Sv). Un dosímetro personal es dosímetro, que se usa en la superficie del cuerpo por la persona que se está monitoreando, y registra la dosis de radiación recibida. Dosimetría personalLas técnicas varían y dependen en parte de si la fuente de radiación se encuentra fuera del cuerpo (externa) o si se introduce en el cuerpo (interna). Los dosímetros personales se utilizan para medir la exposición a la radiación externa. Las exposiciones internas generalmente se controlan midiendo la presencia de sustancias nucleares en el cuerpo o midiendo sustancias nucleares excretadas por el cuerpo.

Los dosímetros disponibles comercialmente van desde dispositivos pasivos de bajo costo que almacenan información de dosis del personal para su posterior lectura, hasta dispositivos más costosos que funcionan con baterías y que muestran información inmediata de dosis y tasa de dosis (generalmente un dosímetro personal electrónico ). El método de lectura, el rango de medición de dosis, el tamaño, el peso y el precio son factores de selección importantes.

Hay dos tipos de dosímetros:

  • Dosímetros pasivos . Los dosímetros pasivos de uso común son el dosímetro termoluminiscente (TLD) y la placa de película. Un dosímetro pasivo produce una señal inducida por radiación, que se almacena en el dispositivo. Luego se procesa el dosímetro y se analiza la salida.
  • Dosímetros activos . Para obtener un valor en tiempo real de su exposición, puede usar un dosímetro activo, generalmente un dosímetro personal electrónico (EPD). Un dosímetro activo produce una señal inducida por radiación y muestra una lectura directa de la dosis detectada o la tasa de dosis en tiempo real.

Los dosímetros pasivos y activos a menudo se usan juntos para complementarse entre sí. Para estimar las dosis efectivas, los dosímetros deben usarse en una posición del cuerpo representativa de su exposición, típicamente entre la cintura y el cuello, en la parte delantera del torso, frente a la fuente radiactiva. Los dosímetros generalmente se usan en la parte exterior de la ropa, alrededor del pecho o el torso para representar la dosis para «todo el cuerpo». También se pueden usar dosímetros en las extremidades o cerca del ojo para medir una dosis equivalente a estos tejidos.

Los dosímetros personales en uso hoy en día no son instrumentos absolutos, sino instrumentos de referencia. Eso significa que deben calibrarse periódicamente . Cuando se calibra un dosímetro de referencia, se puede determinar un factor de calibración. Este factor de calibración relaciona la cantidad de exposición con la dosis informada. La validez de la calibración se demuestra manteniendo la trazabilidad de la fuente utilizada para calibrar el dosímetro. La trazabilidad se logra mediante la comparación de la fuente con un «estándar primario» en un centro de calibración de referencia. En el monitoreo de individuos, los valores de estas cantidades operativas se toman como una evaluación suficientemente precisa de la dosis efectiva y la dosis de la piel, respectivamente, en particular, si sus valores están por debajo delímites de protección .

 

Dosimetría Médica

La dosimetría médica es el cálculo de la dosis absorbida y la optimización de la administración de la dosis en los exámenes y tratamientos médicos. En general, las exposiciones a la radiación de los exámenes de diagnóstico médico son bajas (especialmente en usos de diagnóstico). Las dosis también pueden ser altas (solo para usos terapéuticos), pero en cada caso, siempre deben estar justificadas por los beneficios del diagnóstico preciso de posibles enfermedades o por los beneficios de un tratamiento preciso. Estas dosis incluyen contribuciones de radiología de diagnóstico médico y dental (radiografías de diagnóstico), medicina nuclear clínica y radioterapia. Dosimetría médicaA menudo es realizado por un físico profesional de la salud con capacitación especializada en ese campo. Para planificar la administración de la radioterapia, la radiación producida por las fuentes generalmente se caracteriza con curvas de dosis de profundidad porcentual y perfiles de dosis medidos por un físico médico.

El uso médico de la radiación ionizante sigue siendo un campo que cambia rápidamente. En cualquier caso, la utilidad de la radiación ionizante debe equilibrarse con sus peligros. Hoy en día se encontró un compromiso y la mayoría de los usos de la radiación están optimizados. Hoy en día es casi increíble que las radiografías se usaran, en algún momento, para encontrar el par de zapatos adecuado (es decir, fluoroscopia para calzar zapatos). Las mediciones realizadas en los últimos años indican que las dosis a los pies estaban en el rango de 0.07 – 0.14 Gy para una exposición de 20 segundos. Esta práctica se detuvo cuando se comprendieron mejor los riesgos de la radiación ionizante.

Ver también: exposiciones médicas

Dosimetría Ambiental

La dosimetría ambiental se usa cuando es probable que el medio ambiente genere una dosis de radiación significativa. Como se escribió, la radiación nos rodea . En, alrededor y sobre el mundo en que vivimos. Es una fuerza de energía natural que nos rodea. Es una parte de nuestro mundo natural que ha estado aquí desde el nacimiento de nuestro planeta. Todas las criaturas vivientes, desde el principio de los tiempos, han estado y siguen estando expuestas a la radiación ionizante . La radiación ionizante se genera a través de reacciones nucleares , desintegración nuclear , por temperaturas muy altas o por aceleración de partículas cargadas en campos electromagnéticos.

En general, hay dos grandes categorías de fuentes de radiación en el medio ambiente:

  • Radiación de fondo natural . La radiación de fondo natural incluye radiación producida por el Sol, rayos, radioisótopos primordiales o explosiones de supernovas, etc.
  • Fuentes de radiación artificiales . Las fuentes artificiales incluyen usos médicos de radiación, residuos de pruebas nucleares, usos industriales de radiación, etc.

Un ejemplo de dosimetría ambiental  es el monitoreo de radón. El radón es un gas radiactivo generado por la descomposición del uranio , que está presente en cantidades variables en la corteza terrestre. Es importante tener en cuenta que el radón es un gas noble , mientras que todos sus productos de descomposición son metales . El mecanismo principal para la entrada de radón en la atmósfera es la difusión a través del suelo.. Ciertas áreas geográficas, debido a la geología subyacente, generan continuamente radón que impregna su camino hacia la superficie de la tierra. En algunos casos, la dosis puede ser significativa en edificios donde el gas puede acumularse. Las ubicaciones con mayor fondo de radón están bien mapeadas en cada país. Al aire libre, oscila entre 1 y 100 Bq / m3, incluso menos (0.1 Bq / m3) sobre el océano. En cuevas o minas aireadas, o casas mal aireadas, su concentración sube a 20–2,000 Bq / m3. En la atmósfera exterior, también hay cierta advección causada por el viento y los cambios en la presión barométrica. Se utilizan varias técnicas de dosimetría especializadas para evaluar la dosis que pueden recibir los ocupantes de un edificio.

Medición y monitoreo de dosis de radiación

En capítulos anteriores, describimos la dosis equivalente y la dosis efectiva . Pero estas dosis no son directamente medibles . Para este propósito, el ICRP ha introducido y definido un conjunto de cantidades operativas , que pueden medirse y que tienen la intención de proporcionar una estimación razonable de las cantidades protegidas. Estas cantidades tienen como objetivo proporcionar una estimación conservadora del valor de las cantidades de protección relacionadas con una exposición, evitando tanto la subestimación como la sobreestimación excesiva.

Los enlaces numéricos entre estas cantidades se representan mediante coeficientes de conversión , que se definen para una persona de referencia. Es muy importante que esté disponible un conjunto de coeficientes de conversión acordados internacionalmente para uso general en la práctica de protección radiológica para exposiciones ocupacionales y exposiciones del público. Para el cálculo de los coeficientes de conversión para exposición externa, se utilizan fantasmas computacionales para la evaluación de dosis en varios campos de radiación. Para el cálculo de los coeficientes de dosis a partir de la ingesta de radionúclidos , se utilizan modelos biocinéticos para radionúclidos, datos fisiológicos de referencia y fantasmas computacionales.

En un informe (ICRP, 1996b, ICRU, 1997) se publica un conjunto de datos evaluados de coeficientes de conversión para protección y cantidades operativas para exposición externa a fotones, neutrones y radiación de electrones monoenergéticos en condiciones de irradiación específicas.

Monitoreo de dosis de radiación - Cantidades operacionalesEn general, el ICRP define cantidades operativas para el área y el monitoreo individual de exposiciones externas. Las cantidades operativas para el monitoreo del área son:

  • Dosis ambiental equivalente , H * (10). La dosis equivalente ambiental es una cantidad operativa para el monitoreo del área de radiación fuertemente penetrante.
  • Dosis direccional equivalente , H ‘(d, Ω). La dosis direccional equivalente es una cantidad operativa para el monitoreo del área de radiación débilmente penetrante.

Las cantidades operativas para el monitoreo individual son:

  • Dosis personal equivalente , p (0.07) . Ladosis equivalente de H p (0.07) es una cantidad operativa para el monitoreo individual para la evaluación de la dosis para la piel y las manos y los pies.
  • Dosis personal equivalente , p (10) . La dosis equivalente de p (10) es una cantidad operativa para el monitoreo individual para la evaluación de la dosis efectiva.

Referencia especial: ICRP, 2007. Las recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica. Publicación 103 de la CIPR. Ann. ICRP 37 (2-4).

Medición y monitoreo de radiación - Cantidades y límites

 

Límites de dosis

Ver también: límites de dosis

Los límites de dosis se dividen en dos grupos, el público y los trabajadores ocupacionalmente expuestos. Según la ICRP, la exposición ocupacional se refiere a toda exposición incurrida por los trabajadores en el curso de su trabajo, con la excepción de

  1. exposiciones excluidas y exposiciones de actividades exentas que involucran radiación o fuentes exentas
  2. cualquier exposición médica
  3. La radiación de fondo natural local normal.

La siguiente tabla resume los límites de dosis para los trabajadores ocupacionalmente expuestos y para el público:

límites de dosis - radiación
Tabla de límites de dosis para trabajadores ocupacionalmente expuestos y para el público.
Fuente de datos: ICRP, 2007. Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica. Publicación 103 de la CIPR. Ann. ICRP 37 (2-4).

De acuerdo con la recomendación de la ICRP en su declaración sobre las reacciones tisulares del 21 de abril de 2011, el límite de dosis equivalente para el cristalino del ojo para exposición ocupacional en situaciones de exposición planificadas se redujo de 150 mSv / año a 20 mSv / año, en promedio durante períodos definidos de 5 años, sin dosis anual en un solo año superior a 50 mSv.

Los límites de la dosis efectiva son para la suma de las dosis efectivas relevantes de la exposición externa en el período de tiempo especificado y la dosis efectiva comprometida de la ingesta de radionucleidos en el mismo período. Para los adultos, la dosis efectiva comprometida se calcula para un período de 50 años después de la ingesta, mientras que para los niños se calcula para el período hasta los 70 años. El límite efectivo de dosis para todo el cuerpo de 20 mSv es un valor promedio durante cinco años. El límite real es de 100 mSv en 5 años, con no más de 50 mSv en un año.

Sievert – Unidad de dosis equivalente

En protección radiológica, el sievert es una unidad derivada de dosis equivalente y dosis efectiva . El sievert representa el efecto biológico equivalente del depósito de un joule de energía de rayos gamma en un kilogramo de tejido humano. La unidad de sievert es importante en la protección radiológica y lleva el nombre del científico sueco Rolf Sievert, que realizó muchos de los primeros trabajos sobre dosimetría de radiación en radioterapia.

Como se escribió, el sievert se usa para cantidades de dosis de radiación, como dosis equivalente y dosis efectiva. La dosis equivalente (símbolo T ) es una cantidad de dosis calculada para órganos individuales (índice T – tejido). La dosis equivalente se basa en la dosis absorbida en un órgano, ajustada para tener en cuenta la efectividad del tipo de radiación . La dosis equivalente se da el símbolo H T . La unidad SI de T es el sievert (Sv) o todavía se usa comúnmente rem ( hombre equivalente de roentgen ) ( 1 Sv = 100 rem ).

Ejemplos de dosis en Sieverts

Debemos tener en cuenta que la radiación nos rodea. En, alrededor y sobre el mundo en que vivimos. Es una fuerza de energía natural que nos rodea. Es una parte de nuestro mundo natural que ha estado aquí desde el nacimiento de nuestro planeta. En los siguientes puntos tratamos de expresar enormes rangos de exposición a la radiación, que pueden obtenerse de varias fuentes.

  • 0.05 µSv – Dormir al lado de alguien
  • 0.09 µSv – Vivir dentro de 30 millas de una planta de energía nuclear por un año
  • 0.1 µSv – Comer una banana
  • 0.3 µSv – Vivir dentro de 50 millas de una central eléctrica de carbón durante un año
  • 10 µSv : dosis diaria promedio recibida del fondo natural
  • 20 µSv – Radiografía de tórax
  • 40 µSv : un vuelo en avión de 5 horas
  • 600 µSv – mamografía
  • 1000 µSv – Límite de dosis para miembros individuales del público, dosis efectiva total por año
  • 3 650 µSv : dosis media anual recibida del fondo natural
  • 5 800 µSv : tomografía computarizada del tórax
  • 10 000 µSv : dosis media anual recibida de un entorno natural en Ramsar, Irán
  • 20 000 µSv – tomografía computarizada de cuerpo completo
  • 175 000 µSv – Dosis anual de radiación natural en una playa de monazita cerca de Guarapari, Brasil.
  • 5 000 000 µSv : dosis que mata a un ser humano con un riesgo del 50% en 30 días (LD50 / 30), si la dosis se recibe durante un período muy corto .

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.