Was ist radioaktiver Zerfall – Gleichung – Formel – Definition

Radioaktiver Zerfall – Gleichung – Formel. Dieser Artikel fasst Gleichungen und Formeln zusammen, die zur Berechnung des radioaktiven Zerfalls verwendet werden, einschließlich des Zerfallsgesetzes und der Bateman-Gleichungen. Dosimetrie

Zerfallsgesetz – Gleichung – Formel

Das Gesetz über den radioaktiven Zerfall besagt, dass die Wahrscheinlichkeit pro Zeiteinheit, dass ein Kern zerfällt, unabhängig von der Zeit konstant ist. Diese Konstante wird als Abklingkonstante bezeichnet und mit λ, „Lambda“, bezeichnet. Diese konstante Wahrscheinlichkeit kann zwischen verschiedenen Arten von Kernen stark variieren, was zu den vielen verschiedenen beobachteten Zerfallsraten führt. Der radioaktive Zerfall einer bestimmten Anzahl von Atomen (Masse) ist zeitlich exponentiell.

Gesetz über den radioaktiven Zerfall: N = Ne- λt

Die Rate des nuklearen Zerfalls wird auch als Halbwertszeit gemessen . Die Halbwertszeit ist die Zeit, die ein bestimmtes Isotop benötigt, um die Hälfte seiner Radioaktivität zu verlieren. Wenn ein Radioisotop eine Halbwertszeit von 14 Tagen hat, ist die Hälfte seiner Atome innerhalb von 14 Tagen zerfallen. In weiteren 14 Tagen wird die Hälfte der verbleibenden Hälfte verfallen und so weiter. Die Halbwertszeiten reichen von Millionstelsekunden für hochradioaktive Spaltprodukte bis zu Milliarden von Jahren für langlebige Materialien (wie natürlich vorkommendes Uran). Beachte dasKurze Halbwertszeiten gehen mit großen Zerfallskonstanten einher. Radioaktives Material mit einer kurzen Halbwertszeit ist (zum Zeitpunkt der Herstellung) viel radioaktiver, verliert jedoch offensichtlich schnell seine Radioaktivität. Unabhängig davon, wie lang oder kurz die Halbwertszeit ist, bleibt nach Ablauf von sieben Halbwertszeiten weniger als 1 Prozent der ursprünglichen Aktivität übrig.

Das Gesetz über den radioaktiven Zerfall kann auch für Aktivitätsberechnungen oder Massenberechnungen für radioaktives Material abgeleitet werden:

(Anzahl der Kerne) N = Ne- λt     (Aktivität) A = Ae- λt      (Masse) m = me- λt

wobei N (Anzahl der Partikel) die Gesamtzahl der Partikel in der Probe ist, A (Gesamtaktivität) die Anzahl der Zerfälle pro Zeiteinheit einer radioaktiven Probe ist, m die Masse des verbleibenden radioaktiven Materials ist.

Zerfallskonstante und Halbwertszeit – Gleichung – Formel

Bei der Berechnung der Radioaktivität muss einer von zwei Parametern ( Zerfallskonstante oder Halbwertszeit ) bekannt sein, die die Zerfallsrate charakterisieren. Es gibt eine Beziehung zwischen der Halbwertszeit (t 1/2 ) und der Abklingkonstante λ. Die Beziehung kann aus dem Zerfallsgesetz abgeleitet werden, indem N = ½ N o gesetzt wird . Das gibt:

wobei ln 2 (das natürliche log von 2) gleich 0,693 ist. Wenn die Abklingkonstante (λ) angegeben ist, ist es einfach, die Halbwertszeit zu berechnen und umgekehrt.

Bateman-Gleichungen

In der Physik sind die Bateman-Gleichungen ein Satz von Differentialgleichungen erster Ordnung, die die zeitliche Entwicklung von Nuklidkonzentrationen beschreiben, die eine serielle oder lineare Zerfallskette durchlaufen. Das Modell wurde 1905 von Ernest Rutherford formuliert und die analytische Lösung für den Fall des radioaktiven Zerfalls in einer linearen Kette wurde 1910 von Harry Bateman bereitgestellt. Dieses Modell kann auch in nuklearen Verarmungscodes verwendet werden, um Probleme der nuklearen Transmutation und des Zerfalls zu lösen.

Beispielsweise ist ORIGEN ein Computercodesystem zur Berechnung des Aufbaus, Zerfalls und der Verarbeitung radioaktiver Materialien. ORIGEN verwendet eine Exponentialmethode mit Matrix, um ein großes System gekoppelter linearer gewöhnlicher Differentialgleichungen erster Ordnung (ähnlich den Bateman-Gleichungen ) mit konstanten Koeffizienten zu lösen .

Die Bateman-Gleichungen für den Fall des radioaktiven Zerfalls von n-Nuklid-Reihen in linearer Kette, die die Nuklidkonzentrationen beschreiben, lauten wie folgt:

Bateman-Gleichungen

Beispiel – Gesetz über radioaktiven Zerfall

Jod 131 - ZerfallsschemaEine Materialprobe enthält 1 Mikrogramm Jod-131. Beachten Sie, dass Jod-131 eine wichtige Rolle als radioaktives Isotop in Kernspaltungsprodukten spielt und einen wichtigen Beitrag zu den Gesundheitsgefahren leistet, wenn es während eines Unfalls in die Atmosphäre freigesetzt wird. Jod-131 hat eine Halbwertszeit von 8,02 Tagen.

Berechnung:

  1. Die Anzahl der anfänglich vorhandenen Iod-131-Atome.
  2. Die Aktivität des Iod-131 in Curies.
  3. Die Anzahl der Iod-131-Atome, die in 50 Tagen verbleiben.
  4. Die Zeit, die die Aktivität benötigt, um 0,1 mCi zu erreichen.

Lösung:

  1. Die Anzahl der Atome von Iod-131 kann unter Verwendung der Isotopenmasse wie folgt bestimmt werden.

I-131 = m I-131 . N A / M I-131

I-131 = (1 & mgr; g ) x (6,02 × 10 23 Kerne / mol) / (130,91 g / mol)

I-131 = 4,6 × 10 15 Kerne

  1. Die Aktivität des Iod-131 in Curies kann anhand seiner Zerfallskonstante bestimmt werden :

Das Jod-131 hat eine Halbwertszeit von 8,02 Tagen (692928 Sekunden) und daher ist seine Zerfallskonstante:

Mit diesem Wert für die Abklingkonstante können wir die Aktivität der Probe bestimmen:

3) und 4) Die Anzahl der Iod-131-Atome, die in 50 Tagen verbleiben (N 50d ), und die Zeit, die die Aktivität benötigt, um 0,1 mCi zu erreichen, können unter Verwendung des Zerfallsgesetzes berechnet werden:

Wie zu sehen ist, wird nach 50 Tagen die Anzahl der Iod-131-Atome und damit die Aktivität etwa 75-mal geringer sein. Nach 82 Tagen ist die Aktivität ungefähr 1200-mal geringer. Daher wird die Zeit von zehn Halbwertszeiten (Faktor 2 10 = 1024) häufig verwendet, um die Restaktivität zu definieren.

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: [email protected] oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.