Facebook Instagram Youtube Twitter

Qué es el detector de germanio – Principio de funcionamiento – Definición

Detector de germanio – Principio de funcionamiento. El funcionamiento de los detectores de semiconductores se resume en los siguientes puntos: la radiación ionizante entra en el volumen sensible (cristal de germanio) …… Dosimetría de radiación
Detector HPGe - Germanio
Detector HPGe con criostato LN2 Fuente: canberra.com

Los detectores de semiconductores basados ​​en germanio se usan más comúnmente cuando se requiere una muy buena resolución de energía , especialmente para la espectroscopía gamma , así como la espectroscopía de rayos X. En la espectroscopía gamma, se prefiere el germanio debido a que su número atómico es mucho más alto que el silicio y que aumenta la probabilidad de interacción con los rayos gamma. Además, el germanio tiene una energía media más baja necesaria para crear un par de electrones, que es 3.6 eV para silicio y 2.9 eV para germanio. Esto también proporciona a este último una mejor resolución en energía. Por otro lado, para lograr la máxima eficiencia, los detectores deben funcionar a temperaturas muy bajas de nitrógeno líquido (-196 ° C), porque a temperaturas ambiente el ruido causado por la excitación térmica es muy alto.

Detector de germanio – Principio de funcionamiento

El funcionamiento de los detectores de semiconductores se resume en los siguientes puntos:

  • La radiación ionizante ingresa al volumen sensible ( cristal de germanio ) del detector e interactúa con el material semiconductor.
  • El fotón de alta energía que pasa a través del detector ioniza los átomos de los semiconductores, produciendo los pares de electrones . El número de pares de electrones es proporcional a la energía de la radiación al semiconductor. Como resultado, se transfieren varios electrones desde la banda de valencia a la banda de conducción, y se crea un número igual de agujeros en la banda de valencia.
  • Dado que el germanio puede tener un espesor de centímetros agotado y sensible, pueden absorber fotones de alta energía totalmente  (hasta pocos MeV).
  • Bajo la influencia de un campo eléctrico, los electrones y los agujeros viajan a los electrodos, donde producen un pulso que se puede medir en un circuito externo.
  • Este pulso lleva información sobre la energía de la radiación incidente original. El número de tales pulsos por unidad de tiempo también proporciona información sobre la intensidad de la radiación.

En todos los casos, un fotón deposita una parte de su energía a lo largo de su trayectoria y puede ser absorbido totalmente. La absorción total de un fotón de 1 MeV produce alrededor de 3 x 10 5 pares de electrones. Este valor es menor en comparación con el número total de portadores libres en un semiconductor intrínseco de 1 cm 3 . La partícula que pasa a través del detector ioniza los átomos del semiconductor, produciendo los pares de electrones. Pero en los detectores basados ​​en germanio a temperatura ambiente, la excitación térmica es dominante. Es causada por impurezas, irregularidades en la estructura reticular o por dopante . Depende mucho de la brecha E(una distancia entre la valencia y la banda de conducción), que es muy baja para germanio (Egap = 0,67 eV). Dado que la excitación térmica produce el ruido del detector, se requiere enfriamiento activo para algunos tipos de semiconductores (por ejemplo, germanio).

Germanio - semiconductorTenga en cuenta que una muestra de 1 cm 3 de germanio puro a 20 ° C contiene aproximadamente 4.2 × 10 22 átomos, pero también contiene aproximadamente 2.5 x 10 13 electrones libres y 2.5 x 10 13 agujeros generados constantemente a partir de energía térmica. Como se puede ver, la relación señal / ruido (S / N) sería mínima (compárela con 3 x 10 5 pares de electrones). La adición de 0.001% de arsénico (una impureza) dona un extra de 10 17electrones libres en el mismo volumen y la conductividad eléctrica se incrementa en un factor de 10,000. En material dopado, la relación señal / ruido (S / N) sería aún menor. Debido a que el germanio tiene un intervalo de banda relativamente bajo, estos detectores deben enfriarse para reducir la generación térmica de portadores de carga (por lo tanto, invertir la corriente de fuga) a un nivel aceptable. De lo contrario, el ruido inducido por la corriente de fuga destruye la resolución energética del detector.

 

Aplicación de detectores de germanio – espectroscopía gamma

Como se escribió, el estudio y análisis de los espectros de rayos gamma para uso científico y técnico se llama espectroscopía gamma, y ​​los espectrómetros de rayos gamma son los instrumentos que observan y recopilan dichos datos. Un espectrómetro de rayos gamma (GRS) es un dispositivo sofisticado para medir la distribución de energía de la radiación gamma. Para la medición de rayos gamma por encima de varios cientos de keV, hay dos categorías de detectores de gran importancia,  centelleadores inorgánicos como NaI (Tl)  y  detectores de semiconductores.. En los artículos anteriores, describimos la espectroscopía gamma utilizando un detector de centelleo, que consiste en un cristal centelleador adecuado, un tubo fotomultiplicador y un circuito para medir la altura de los pulsos producidos por el fotomultiplicador. Las ventajas de un contador de centelleo son su eficiencia (gran tamaño y alta densidad) y las altas tasas de precisión y conteo que son posibles. Debido al alto número atómico de yodo, una gran cantidad de todas las interacciones dará como resultado la absorción completa de la energía de los rayos gamma, por lo que la fracción de la foto será alta.

Espectro del detector HPGe
Figura: Leyenda: Comparación de los espectros de NaI (Tl) y HPGe para cobalto-60. Fuente: Radioisótopos y Metodología de Radiación I, II. Soo Hyun Byun, Notas de la conferencia. Universidad McMaster, Canadá.

Pero si  se requiere una  resolución energética perfecta , tenemos que usar  un detector basado en germanio , como el  detector HPGe . Los detectores de semiconductores basados ​​en germanio se usan más comúnmente cuando se requiere una muy buena resolución de energía, especialmente para  la espectroscopía gamma , así como  la espectroscopía de rayos X. En la espectroscopía gamma, se prefiere el germanio debido a que su número atómico es mucho más alto que el silicio y que aumenta la probabilidad de interacción con los rayos gamma. Además, el germanio tiene una energía promedio menor necesaria para crear un par de electrones, que es 3.6 eV para silicio y 2.9 eV para germanio. Esto también proporciona a este último una mejor resolución en energía. El FWHM (ancho completo a la mitad máximo) para detectores de germanio es una función de la energía. Para un fotón de 1.3 MeV, el FWHM es 2.1 keV, que es muy bajo.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.