Facebook Instagram Youtube Twitter

Was ist Germaniumdetektor – Funktionsprinzip – Definition

Germaniumdetektor – Funktionsprinzip. Die Funktionsweise von Halbleiterdetektoren lässt sich in folgenden Punkten zusammenfassen: Ionisierende Strahlung tritt in das empfindliche Volumen (Germaniumkristall) ein …… Strahlendosimetrie
HPGe Detektor - Germanium
HPGe-Detektor mit LN2-Kryostat Quelle: canberra.com

Halbleiterdetektoren auf Germaniumbasis werden am häufigsten dort eingesetzt, wo eine sehr gute Energieauflösung erforderlich ist, insbesondere für die Gammaspektroskopie sowie die Röntgenspektroskopie. In der Gammaspektroskopie wird Germanium bevorzugt, da seine Ordnungszahl viel höher als die von Silizium ist und die Wahrscheinlichkeit einer Wechselwirkung mit Gammastrahlen erhöht. Darüber hinaus hat Germanium eine niedrigere durchschnittliche Energie, die zur Erzeugung eines Elektronen-Loch-Paares erforderlich ist: 3,6 eV für Silizium und 2,9 eV für Germanium. Dies bietet letztere auch eine bessere Energieauflösung. Andererseits müssen die Detektoren, um eine maximale Effizienz zu erreichen, bei sehr niedrigen Temperaturen von flüssigem Stickstoff (-196 ° C) arbeiten, da bei Raumtemperaturen das durch die thermische Erregung verursachte Rauschen sehr hoch ist.

Germaniumdetektor – Funktionsprinzip

Die Funktionsweise von Halbleiterdetektoren ist in folgenden Punkten zusammengefasst:

  • Ionisierende Strahlung tritt in das empfindliche Volumen ( Germaniumkristall ) des Detektors ein und interagiert mit dem Halbleitermaterial.
  • Durch den Detektor hindurchtretendes hochenergetisches Photon ionisiert die Atome des Halbleiters und erzeugt die Elektron-Loch-Paare . Die Anzahl der Elektronen-Loch-Paare ist proportional zur Energie der Strahlung zum Halbleiter. Infolgedessen wird eine Anzahl von Elektronen vom Valenzband zum Leitungsband übertragen, und es wird eine gleiche Anzahl von Löchern im Valenzband erzeugt.
  • Da Germanium eine abgereicherte, empfindliche Dicke von Zentimetern haben kann, können sie energiereiche Photonen  (bis zu wenigen MeV) vollständig absorbieren .
  • Unter dem Einfluss eines elektrischen Feldes wandern Elektronen und Löcher zu den Elektroden, wo sie zu einem Impuls führen, der in einem äußeren Stromkreis gemessen werden kann.
  • Dieser Impuls gibt Auskunft über die Energie der ursprünglich einfallenden Strahlung. Die Anzahl solcher Impulse pro Zeiteinheit gibt auch Auskunft über die Intensität der Strahlung.

In allen Fällen lagert ein Photon einen Teil seiner Energie auf seinem Weg ab und kann vollständig absorbiert werden. Die Gesamtabsorption eines 1-MeV-Photons erzeugt etwa 3 × 10 5 Elektronenlochpaare. Dieser Wert ist im Vergleich zur Gesamtzahl der freien Ladungsträger in einem 1 cm -Halbleiter von untergeordneter Bedeutung . Durch den Detektor gelangende Teilchen ionisieren die Atome des Halbleiters und erzeugen die Elektronen-Loch-Paare. In Germanium-basierten Detektoren bei Raumtemperatur ist jedoch die thermische Anregung dominierend. Es wird durch Verunreinigungen, Unregelmäßigkeiten im Strukturgitter oder durch Dotierstoffe verursacht . Es hängt stark von der E- Lücke ab(ein Abstand zwischen Valenz und Leitungsband), der für Germanium sehr gering ist (Egap = 0,67 eV). Da thermische Anregung zu Detektorrauschen führt, ist für einige Halbleitertypen (z. B. Germanium) eine aktive Kühlung erforderlich.

Germanium - HalbleiterEs ist zu beachten, dass eine 1 cm 3 -Probe von reinem Germanium bei 20 ° C ungefähr 4,2 × 10 22 Atome enthält, aber auch ungefähr 2,5 × 10 13 freie Elektronen und 2,5 × 10 13 Löcher, die konstant aus thermischer Energie erzeugt werden. Wie man sehen kann, würde das Signal – zu – Rausch – Verhältnis (S / N) minimal (vergleiche es mit 3 x 10 5 Elektron-Loch – Paaren). Die Zugabe von 0,001% Arsen (eine Verunreinigung) spendet zusätzliche 10 17Freie Elektronen im gleichen Volumen und die elektrische Leitfähigkeit erhöhen sich um den Faktor 10.000. Bei dotiertem Material wäre das Signal-Rausch-Verhältnis (S / N) noch kleiner. Da Germanium eine relativ geringe Bandlücke aufweist, müssen diese Detektoren gekühlt werden, um die thermische Erzeugung von Ladungsträgern (also den umgekehrten Leckstrom) auf ein akzeptables Niveau zu reduzieren. Andernfalls zerstört durch leckstrominduziertes Rauschen die Energieauflösung des Detektors.

Anwendung von Germaniumdetektoren – Gammaspektroskopie

Wie bereits geschrieben, wird das Studium und die Analyse von Gammastrahlenspektren für wissenschaftliche und technische Zwecke als Gammaspektroskopie bezeichnet, und Gammastrahlenspektrometer sind die Instrumente, die solche Daten beobachten und sammeln. Ein Gammastrahlenspektrometer (GRS) ist ein hoch entwickeltes Gerät zur Messung der Energieverteilung von Gammastrahlung. Für die Messung von Gammastrahlen über mehreren hundert keV gibt es zwei Detektorkategorien von großer Bedeutung,  anorganische Szintillatoren wie NaI (Tl) –  und  Halbleiterdetektoren. In den vorhergehenden Artikeln haben wir die Gammaspektroskopie unter Verwendung eines Szintillationsdetektors beschrieben, der aus einem geeigneten Szintillatorkristall, einer Fotovervielfacherröhre und einer Schaltung zum Messen der Höhe der vom Fotovervielfacher erzeugten Impulse besteht. Die Vorteile eines Szintillationszählers sind seine Effizienz (große Größe und hohe Dichte) und die möglichen hohen Präzisions- und Zählraten. Aufgrund der hohen Atomzahl von Jod führt eine große Anzahl aller Wechselwirkungen zu einer vollständigen Absorption der Gammastrahlenenergie, so dass der Photofraktion hoch ist.

HPGe-Detektorspektrum
Abbildung: Bildunterschrift: Vergleich der NaI (Tl) – und HPGe-Spektren für Cobalt-60. Quelle: Radioisotope und Strahlenmethodik I, II. Soo Hyun Byun, Vorlesungsskript. McMaster University, Kanada.

Wenn jedoch eine  perfekte Energieauflösung  erforderlich ist, müssen wir einen Detektor auf  Germaniumbasis wie den  HPGe-Detektor verwenden . Halbleiterdetektoren auf Germaniumbasis werden am häufigsten dort eingesetzt, wo eine sehr gute Energieauflösung erforderlich ist, insbesondere für die  Gammaspektroskopie sowie für die  Röntgenspektroskopie. In der Gammaspektroskopie wird Germanium bevorzugt, da seine Ordnungszahl viel höher als die von Silizium ist und die Wahrscheinlichkeit einer Gammastrahlenwechselwirkung erhöht. Darüber hinaus hat Germanium eine niedrigere durchschnittliche Energie, die zur Erzeugung eines Elektron-Loch-Paares erforderlich ist, nämlich 3,6 eV für Silizium und 2,9 eV für Germanium. Dies bietet letzteren auch eine bessere Energieauflösung. Das FWHM (volle Breite bei halbem Maximum) für Germaniumdetektoren ist eine Funktion der Energie. Für ein 1,3-MeV-Photon beträgt die FWHM 2,1 keV, was sehr niedrig ist.

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: [email protected] oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.