Facebook Instagram Youtube Twitter

O que é radiação ionizante – Definição

Radiação ionizante é qualquer radiação (partículas ou ondas eletromagnéticas) que transporta energia suficiente para derrubar elétrons de átomos ou moléculas, ionizando-os. Dosimetria de Radiação
radiação ionizante - símbolo de perigo
radiação ionizante – símbolo de perigo

Radiação ionizante é qualquer radiação ( partículas ou ondas eletromagnéticas ) que transporta energia suficiente para derrubar elétrons de átomos ou moléculas, ionizando-os. Para radiação ionizante, a energia cinética das partículas ( fótons, elétrons, etc. ) é suficiente e a partícula pode ionizar (formar íons pela perda de elétrons) atingir átomos para formar íons.

O limite entre a radiação ionizante e a não ionizante não é claramente definido, uma vez que diferentes moléculas e átomos ionizam em energias diferentes. Isso é típico para ondas eletromagnéticas. Entre as ondas eletromagnéticas pertencem, em ordem crescente de freqüência (energia) e comprimento de onda decrescente: ondas de rádio, microondas, radiação infravermelha, luz visível, radiação ultravioleta, raios X e raios gama. Raios gama , raios X e a parte ultravioleta mais alta do espectro são ionizantes, enquanto os raios ultravioleta mais baixos, luz visível (incluindo luz laser), infravermelho, microondas e ondas de rádio são considerados radiação não ionizante.

Todos  os efeitos de danos biológicos  começam com a conseqüência das interações de radiação com os  átomos que  formam as células. Todos os seres vivos são compostos de uma ou mais células. Cada parte do seu corpo consiste em células ou foi construída por elas. Embora tendamos a pensar nos efeitos biológicos em termos do efeito da radiação nas células vivas, na realidade, a  radiação ionizante , por definição, interage apenas com os átomos por um processo chamado ionização.

O perigo de radiação ionizante reside no fato de que a radiação é invisível e não diretamente detectável pelos sentidos humanos. As pessoas não podem ver nem sentir radiação, mas ela deposita energia nas moléculas do corpo. A energia é transferida em pequenas quantidades para cada interação entre a radiação e uma molécula e geralmente existem muitas dessas interações.

Formas de radiação ionizante

Blindagem de radiação ionizanteA radiação ionizante é categorizada pela natureza das partículas ou ondas eletromagnéticas que criam o efeito ionizante. Essas partículas / ondas têm diferentes mecanismos de ionização e podem ser agrupadas como:

  • Ionizante direto . Partículas carregadas ( núcleos atômicos, elétrons, pósitrons, prótons, múons etc. ) podem ionizar átomos diretamente por interação fundamental através da força de Coulomb, se transportarem energia cinética suficiente. Essas partículas devem estar se movendo em velocidades relativísticas para alcançar a energia cinética necessária. Mesmo os fótons (raios gama e raios X) podem ionizar átomos diretamente (apesar de serem eletricamente neutros) através do efeito Fotoelétrico e do efeito Compton, mas a ionização secundária (indireta) é muito mais significativa.
    • Radiação alfa . A radiação alfa consiste em partículas alfa em alta energia / velocidade. A produção de partículas alfa é denominada decaimento alfa. As partículas alfa consistem em dois prótons e dois nêutrons unidos em uma partícula idêntica a um núcleo de hélio. As partículas alfa são relativamente grandes e carregam uma carga positiva dupla. Eles não são muito penetrantes e um pedaço de papel pode detê-los. Eles viajam apenas alguns centímetros, mas depositam todas as suas energias ao longo de seus caminhos curtos.
    • Radiação beta . A radiação beta consiste em elétrons livres ou pósitrons em velocidades relativísticas. As partículas beta (elétrons) são muito menores que as partículas alfa. Eles carregam uma única carga negativa. Eles são mais penetrantes que as partículas alfa, mas o metal fino de alumínio pode detê-las. Eles podem percorrer vários metros, mas depositam menos energia em qualquer ponto do caminho do que as partículas alfa.
  • Ionizando indiretamente . A radiação ionizante indireta é partículas eletricamente neutras e, portanto, não interage fortemente com a matéria. A maior parte dos efeitos de ionização é devida a ionizações secundárias.
    • Radiação de fótons ( raios gama ou raios X). A radiação de fótons consiste em fótons de alta energia . Esses fótons são partículas / ondas (Dualidade de Partículas de Onda) sem massa de repouso ou carga elétrica. Eles podem viajar 10 metros ou mais no ar. Esta é uma longa distância em comparação com partículas alfa ou beta. No entanto, os raios gama depositam menos energia ao longo de seus caminhos. Chumbo, água e concreto impedem a radiação gama. Os fótons (raios gama e raios X) podem ionizar átomos diretamente através do efeito Fotoelétrico e do efeito Compton, onde o elétron relativamente energético é produzido. O elétron secundário continuará produzindo múltiplos eventos de ionização ; portanto, a ionização secundária (indireta) é muito mais significativa.
    • Radiação de nêutrons . A radiação de nêutrons consiste em nêutrons livres em qualquer energia / velocidade. Os nêutrons podem ser emitidos por fissão nuclear ou pelo decaimento de alguns átomos radioativos. Os nêutrons têm carga elétrica nula e não podem causar ionização diretamente. Os nêutrons ionizam a matéria apenas indiretamente . Por exemplo, quando nêutrons atingem os núcleos de hidrogênio, ocorre radiação de prótons (prótons rápidos). Os nêutrons podem variar de partículas de alta velocidade e alta energia a partículas de baixa velocidade e baixa energia (chamados nêutrons térmicos). Os nêutrons podem viajar centenas de pés no ar sem nenhuma interação.

Radiação High-LET e Low-LET

Fatores de ponderação por radiação - corrente - ICRP
Fonte: ICRP Publ. 103: As recomendações de 2007 da Comissão Internacional de Proteção Radiológica

Como foi escrito, cada tipo de radiação interage com a matéria de uma maneira diferente . Por exemplo, partículas carregadas com altas energias podem ionizar diretamente átomos. As partículas alfa são bastante maciças e carregam uma carga positiva dupla, de modo que tendem a percorrer apenas uma curta distância e não penetram muito no tecido, se é que o fazem. No entanto, as partículas alfa depositam sua energia em um volume menor (possivelmente apenas algumas células se entrarem no corpo) e causam mais danos a essas poucas células.

As partículas beta (elétrons) são muito menores que as partículas alfa. Eles carregam uma única carga negativa. Eles são mais penetrantes que as partículas alfa. Eles podem viajar vários metros, mas depositam menos energia em qualquer ponto do caminho do que as partículas alfa. Isso significa que as partículas beta tendem a danificar mais células, mas com menos danos a cada uma. Por outro lado, partículas eletricamente neutras interagem apenas indiretamente, mas também podem transferir parte ou todas as suas energias para o assunto.

Certamente simplificaria as coisas se os efeitos biológicos da radiação fossem diretamente proporcionais à dose absorvida . Infelizmente, os efeitos biológicos dependem também da maneira como a dose absorvida é distribuída ao longo do caminho da radiação. Estudos mostraram que a radiação alfa e nêutron causa maior dano biológico para uma dada deposição de energia por kg de tecido do que a radiação gama. Foi descoberto que os efeitos biológicos de qualquer radiação aumentam com a transferência linear de energia (LET). Em resumo, o dano biológico da radiação de alta LET ( partículas alfa , prótons ou nêutrons) é muito maior do que o da radiação de baixa LET ( raios gama ). Isso ocorre porque o tecido vivo pode reparar mais facilmente os danos causados ​​pela radiação que se espalha por uma área grande do que aquela que está concentrada em uma área pequena. Obviamente, em níveis muito altos de exposição, os raios gama ainda podem causar muitos danos aos tecidos.

Como mais danos biológicos são causados ​​pela mesma dose física (ou seja, a mesma energia depositada por unidade de massa de tecido), um cinza de radiação alfa ou nêutron é mais prejudicial do que um cinza de radiação gama. Esse fato de que radiações de diferentes tipos (e energias) produzem efeitos biológicos diferentes para a mesma dose absorvida é descrito em termos de fatores conhecidos como efetividade biológica relativa (RBE) e fator de ponderação de radiação (wR).

fator de ponderação da radiação é um fator adimensional usado para determinar a dose equivalente da dose absorvida média sobre um tecido ou órgão e baseia-se no tipo de radiação absorvida. A dose ponderada resultante foi designada como a dose equivalente de órgão ou tecido:

dose equivalente - equação - definição

dose equivalente - definiçãoUma dose equivalente de um Sievert representa a quantidade de dose de radiação equivalente, em termos de dano biológico especificado , a um cinza de raios X ou raios gama . Dose equivalente é uma quantidade não-física (w R é derivado de consequências biológicas da radiação ionizante) amplamente usados na dosimetria medido por dosímetros. Dose equivalente é designada pelo ICRP como uma “quantidade limitadora”; especificar limites de exposição para garantir que “a ocorrência de efeitos estocásticos à saúde seja mantida abaixo de níveis inaceitáveis ​​e que as reações teciduais sejam evitadas”.

Energia de ionização

Energia de ionização , também chamada potencial de ionização , é a energia necessária para remover um elétron do átomo neutro.

X + energia → X + + e 

onde X é qualquer átomo ou molécula capaz de ser ionizada, X + é aquele átomo ou molécula com um elétron removido (íon positivo) e e  é o elétron removido.

Um átomo de nitrogênio, por exemplo, requer a seguinte energia de ionização para remover o elétron mais externo.

N + IE → N + + e         IE = 14,5 eV

A energia de ionização associada à remoção do primeiro elétron é mais comumente usada. O n de energia de ionização th refere-se à quantidade de energia necessária para remover um electrão a partir das espécies com uma taxa de ( n -1).

1a energia de ionização

X → X + + e 

2a energia de ionização

+ → X 2+ + e 

3a energia de ionização

2+ → X 3+ + e 

Energia de ionização para diferentes elementos

Existe uma energia de ionização para cada elétron sucessivo removido. Os elétrons que circundam o núcleo se movem em órbitas bastante bem definidas. Alguns desses elétrons estão mais fortemente ligados ao átomo do que outros. Por exemplo, apenas 7,38 eV são necessários para remover o elétron mais externo de um átomo de chumbo, enquanto 88.000 eV são necessários para remover o elétron mais interno. Ajuda a entender a reatividade de elementos (especialmente metais, que perdem elétrons).

Em geral, a energia de ionização aumenta subindo um grupo e movendo da esquerda para a direita ao longo de um período. Além disso:

  • A energia de ionização é mais baixa para os metais alcalinos que possuem um único elétron fora de uma concha fechada.
  • A energia de ionização aumenta em uma linha no máximo periódico para os gases nobres que fecharam as conchas

Por exemplo, o sódio requer apenas 496 kJ / mol ou 5,14 eV / átomo para ionizá-lo. Por outro lado, o neon, o gás nobre, imediatamente anterior à tabela periódica, requer 2081 kJ / mol ou 21,56 eV / átomo.

Energia de ionização
Fonte: wikipedia.org Licença: CC BY-SA 3.0

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é Radon – Efeitos sobre a saúde – Riscos para a saúde – Definição

O rádon é um gás nobre de ocorrência natural, que possui riscos de saúde muito importantes para a população. A dose média anual de radiação para uma pessoa a partir de radônio é de cerca de 2 mSv / ano e pode variar em várias ordens de magnitude de um lugar para outro. Radon – Efeitos na saúde – Riscos à saúde

O rádon é um gás nobre incolor, inodoro e insípido , que ocorre naturalmente como produto decadente do rádio. Todos os isótopos de radônio são radioativos , mas os dois isótopos de radônio, radônio-222 e radão-220, são muito importantes do ponto de vista da proteção contra radiação.

  • rádon e toro
    Fonte: JANIS (Software de Informação de Dados Nucleares baseado em Java); ENDF / B-VII.1

    Radão-222 . O isótopo de radônio-222 é um produto natural de decomposição do isótopo de urânio mais estável (urânio-238), portanto é um membro da série de urânio .

  • Radão-220 . O isótopo do radônio-220, geralmente chamado de tório , é um produto natural de decomposição do isótopo de tório mais estável ( tório-232 ), portanto, é um membro da série de tório .

É importante notar que o rádon é um gás nobre , enquanto todos os seus produtos de decomposição são metais . O principal mecanismo para a entrada de rádon na atmosfera é a difusão através do solo . Como gás, o rádon difunde-se através das rochas e do solo. Quando o rádon se desintegra, os isótopos metálicos filhas são íons que serão ligados a outras moléculas como a água e as partículas de aerossol no ar. Portanto, todas as discussões sobre as concentrações de radônio no ambiente se referem ao radônio-222. Enquanto a taxa média de produção de rádon-220 (thoron) é aproximadamente a mesma do rádon-222, a quantidade de rádon-220 no ambiente é muito menor que a do rádon-222 devido à meia-vida significativamente mais curta ( tem menos tempo para difundir) o rádon 222 (55 segundos, contra 3,8 dias, respectivamente). Simplesmente o radônio-220 tem menor chance de escapar da rocha.

Radon-222

rádon - fonte - ambiente
Série de urânio – fonte de radônio-222.

O radônio-222 é um gás produzido pela decomposição do rádio-226. Ambos fazem parte da série natural de urânio. Como o urânio é encontrado no solo em todo o mundo em concentrações variadas, também a dose do rádon gasoso está variando em todo o mundo. O rádon 222 é o isótopo mais importante e mais estável do rádon. Sua meia-vida é de apenas 3,8 dias , tornando o rádon um dos elementos mais raros, pois decai rapidamente. Uma fonte importante de radiação natural é o gás radônio, que escorre continuamente da rocha, mas pode, devido à sua alta densidade, acumular-se em casas com pouca ventilação. O fato de radônio é gásdesempenha um papel crucial na disseminação de todos os seus núcleos-filha. O Simply Radon é um meio de transporte da rocha para a atmosfera (ou dentro de edifícios) por seus produtos de deterioração de curta duração ( Pb-210 e Po-210 ), que apresentam muito mais riscos à saúde.

Efeitos do radônio na saúde

O rádon é geralmente a maior fonte natural de radiação, contribuindo para a exposição dos membros do público, às vezes representando metade da exposição total de todas as fontes. O risco para a saúde devido à exposição ao rádon e ao tório provém principalmente da inalação dos produtos de decaimento de vida curta (Pb-210 e Po-210) e da resultante irradiação de partículas alfa dos brônquios e pulmões.

Enquanto esses isótopos estiverem fora do corpo, somente a radiação gama poderá administrar uma dose. Mas o rádon é um gás e difunde-se do solo para se misturar com o ar. A meia-vida do radônio-222 é longa comparada com o tempo de permanência do ar nos pulmões, de modo que o radônio decai relativamente pouco durante a respiração. Além disso, o rádon é um gás nobre e sua inércia impede sua retenção a longo prazo no corpo. Mas quando o radônio se desintegra, os isótopos metálicos filhas ( Pb-210 e Po-210) não são inertes e devem ser ligados a outras moléculas como a água e a partículas de aerossol no ar. Quando essas partículas são inaladas, parte do chumbo-210 é retida pelo organismo. A ingestão de chumbo-210 também é uma maneira possível. Como o chumbo-210 é um emissor beta fraco, não causa grandes doses. O chumbo-210 é, portanto, um meio de transporte do ar interior para o corpo. A radiação do radônio e seus produtos de decomposição é uma mistura de partículas alfa e beta, além de radiação gama. Quando os isótopos entram no corpo, todos os tipos de radiação contribuem.

Mas é o polônio-210 , o produto decadente do chumbo-210, que emite uma partícula alfa de 5,3 MeV , que fornece a maior parte da dose equivalente . As partículas alfa , que pertencem à radiação de alta LET , são bastante massivas e carregam uma carga dupla positiva, de modo que tendem a viajar apenas uma curta distância e não penetram muito nos tecidos, se é que o fazem. No entanto, as partículas alfa depositam sua energia em um volume menor (possivelmente apenas algumas células se entrarem no corpo) e causam mais danos nessas poucas células (mais de 80% da energia absorvida pelo radônio é devida às partículas alfa). Portanto, o fator de ponderação da radiação alfa é igual a 20. Uma dose absorvida de 1 mGy pelas partículas alfa levará a uma dose equivalente a 20 mSv. Em resumo, o rádon e o chumbo podem ser vistos como diferentes tipos de portadores do polônio-210.

Radon - Fonte Natural de RadiaçãoA quantidade de isótopos ingeridos com a comida é insignificante, e toda a preocupação é com a respiração e a deposição de filhas de radônio nos brônquios e nos pulmões. Entre os não fumantes, o radônio é a maior causa de câncer de pulmão e, em geral, a segunda causa. A dose média anual de radiação para uma pessoa a partir de radônio é de cerca de 2 mSv / ano e pode variar em várias ordens de magnitude de um lugar para outro. De acordo com um relatório de 2003, Avaliação dos riscos do radônio nas residências da EPA, as evidências epidemiológicas mostram uma ligação clara entre o câncer de pulmão e as altas concentrações de radônio.

É preciso enfatizar que os cigarros também contêm polônio-210, originário dos produtos de decomposição do rádon, que aderem às folhas do tabaco. O polônio-210 emite uma partícula alfa de 5,3 MeV, que fornece a maior parte da dose equivalente. O tabagismo intenso resulta em uma dose de 160 mSv / ano para manchas localizadas nas bifurcações dos brônquios segmentares nos pulmões a partir da decomposição do polônio-210. Esta dose não é prontamente comparável aos limites de proteção contra radiação , uma vez que a última lida com doses de corpo inteiro, enquanto a dose de fumar é entregue a uma porção muito pequena do corpo.

Radão dentro de casas

Deve-se enfatizar que as concentrações de rádon-222 e rádon-220 no solo e nos materiais de construção variam em várias ordens de magnitude de um lugar para outro e mostram variações significativas de tempo em qualquer local. Locais com maior radônio são bem mapeados em cada país. Ao ar livre, varia de 1 a 100 Bq / m3, ainda menos (0,1 Bq / m3) acima do oceano. Em cavernas ou minas com aeração, ou em casas mal ventiladas, sua concentração sobe para 20–2.000 Bq / m3. Na atmosfera externa, há também alguma advecção causada pelo vento e alterações na pressão barométrica.

radão - mitigação - casa
O gás radônio pode penetrar na casa através de rachaduras (devido a um efeito de chaminé) no chão e nas paredes do porão. Fonte: suro.cz

Os problemas com o rádon estão nas casas, onde podem acumular-se especialmente, devido à sua alta densidade, em áreas baixas, como porões e espaços de rastreamento . Radontambém pode ocorrer nas águas subterrâneas – por exemplo, em algumas águas de nascente e fontes termais. Existem várias possibilidades para a liberação de rádon nas casas. O fato de o rádon ser um gás nobre desempenha um papel crucial na disseminação de todos os seus núcleos filhos. O Simply Radon é um meio de transporte da rocha para a atmosfera (ou dentro de edifícios) por seus produtos de decaimento de curta duração (Pb-210 e Po-210), que apresentam muito mais riscos à saúde. As principais fontes são a rocha ou o solo sobre o qual a casa é construída, bem como o suprimento de água. O principal mecanismo para a entrada de rádon nos edifícios é a difusão no solo . Como gás, o rádon difunde-se através das rochas e do solo. O gás radônio pode penetrar na casa através de rachaduras(devido a um efeito de chaminé) no chão e nas paredes do porão. O aquecimento do ar cria uma sucção de ar da parte inferior da casa, em direção à parte superior da casa. Sem nenhuma membrana de radônio, isso significa que o ar do chão sob a casa é sugado para dentro da casa através de inúmeras rachaduras e aberturas no piso .

Além disso, os materiais de construção (por exemplo, alguns granitos) também são uma fonte de rádon. Outra fonte de rádon é o suprimento de água. A água dos poços, em particular nas regiões com granito rico em rádio, pode conter altas concentrações de radônio. Este é um material com maiores concentrações de urânio / rádio, a partir do qual o rádon é gerado continuamente. Tais materiais, por exemplo, escória, cinzas volantes, etc., podem ser usados ​​em alguns locais. Para materiais de construção usados ​​na construção de casas, os limites críticos para as concentrações específicas de rádio devem ser determinados.

O maior risco de exposição ao radônio ocorre em edifícios herméticos, insuficientemente ventilados e com vazamentos de fundações que permitem que o ar do solo entre nos porões e nas residências. O nível interno de radônio varia consideravelmente com o clima, a época do ano e até a hora do dia – e, é claro, com o sistema de aeração. Por exemplo, dormir com uma janela aberta pode reduzir o conteúdo de radônio considerável.

A maioria dos países adotou uma concentração de radônio de 200 a 400 Bq / m 3 para o ar interno como nível de ação ou referência. Se o teste mostrar níveis inferiores a 4 picocuries de radônio por litro de ar (150 Bq / m 3 ), nenhuma ação será necessária. Foram encontradas concentrações muito altas de radônio (> 1000 Bq / m 3 ) em casas construídas em solos com alto teor de urânio e / ou alta permeabilidade do solo.

Mitigação de Radon

A mitigação do rádon no ar é realizada por meio de ventilação , coletada abaixo de uma laje de concreto ou de uma membrana no solo, ou aumentando as trocas de ar por hora no edifício. As membranas resistentes ao radônio são geralmente produzidas a partir de polietileno de baixa densidade (PEBD) e são estendidas por todo o edifício, incluindo o piso e as paredes. Outra maneira de mitigar o rádon é um sistema de tratamento que utiliza aeração ou carvão ativado para remover o rádon do abastecimento doméstico de água.

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é radiação cósmica – raio cósmico – definição

A radiação cósmica refere-se a fontes de radiação na forma de raios cósmicos que vêm do Sol ou do espaço sideral. A radiação cósmica primária consiste em uma mistura de prótons de alta energia (~ 87%), partículas alfa (~ 11%), elétrons de alta energia (~ 1%) e um traço de núcleos mais pesados ​​(~ 1%). Dosimetria de Radiação

Radiação Cósmica

Radiação Cósmica - Fonte Natural de Radiação
Fonte: nasa.gov Licença: Public Domain

A radiação cósmica refere-se a fontes de radiação na forma de raios cósmicos que vêm do Sol ou do espaço sideral. A Terra sempre foi bombardeada por partículas de alta energia originadas no espaço sideral que geram chuveiros secundários na atmosfera mais baixa. Partículas carregadas (principalmente prótons de alta energia) do sol e do espaço exterior interagem com a atmosfera da Terra e o campo magnético para produzir um banho de radiação (isto é, chuveiro de ar), tipicamente radiação beta e gama . Se você mora em elevações mais altas ou é um passageiro frequente de uma companhia aérea, essa exposição pode ser significativamente maior, pois a atmosfera é mais fina aqui. Os efeitos do campo magnético da Terratambém determina a dose da radiação cósmica .

No nível do solo, os múons , com energias principalmente entre 1 e 20 GeV, contribuem com cerca de 75% da taxa de dose absorvida no ar livre. O restante vem de elétrons produzidos pelos múons ou presentes na cascata eletromagnética. A dose anual de raios cósmicos ao nível do mar é de cerca de 0,27 mSv (27 mrem).

Composição da radiação cósmica

radiação cósmica primária consiste em uma mistura de prótons de alta energia (~ 87%), partículas alfa (~ 11%), elétrons de alta energia (~ 1%) e um traço de núcleos mais pesados ​​(~ 1%). A energia dessas partículas varia entre 10 8 eV e 10 20 eV. Uma fração muito pequena são partículas estáveis ​​de antimatéria , como pósitrons ou antiprótons . A natureza precisa dessa fração restante é uma área de pesquisa ativa.

fonte cósmica de radiaçãoPosteriormente, um grande número de partículas secundárias , em particular, nêutrons e íons carregados, é produzido como resultado de interações entre partículas primárias e a atmosfera da Terra. Como os pions são partículas subatômicas de vida curta, a deterioração subsequente dos pions resulta na produção de múons de alta energia . No nível do solo, os múons , com energias principalmente entre 1 e 20 GeV, contribuem com cerca de 75% da taxa de dose absorvida no ar livre. A taxa de dose da radiação cósmica varia em diferentes partes do mundo e depende fortemente do campo geomagnético , altitude e ciclo solar. A taxa de dose de radiação cósmica nos aviões é tão alta que, de acordo com o Relatório das Nações Unidas UNSCEAR 2000, os trabalhadores das tripulações de aviões recebem mais doses, em média, do que qualquer outro trabalhador, incluindo os das usinas nucleares.

Também temos que incluir os nêutrons no nível do solo. Os raios cósmicos interagem com os núcleos da atmosfera e produzem também nêutrons de alta energia . De acordo com a UNSCEAR, a fluência de nêutrons é de 0,0123 cm -2 s –1 no nível do mar para uma latitude geomagnética de 45 N. Com base nisso, a dose anual efetiva de nêutrons no nível do mar e a 50 graus de latitude é estimada em 0,08 mSv (8 mrem). Vale ressaltar que, nas proximidades de objetos maiores e mais pesados, como edifícios ou navios, o fluxo de nêutrons mede mais alto. Esse efeito é conhecido como “assinatura de nêutrons induzida por raios cósmicos” ou “ efeito navio”Como foi detectado pela primeira vez com navios no mar. Os raios cósmicos criam chuvas na atmosfera que incluem um amplo espectro de nêutrons, múons e prótons secundários. Os nêutrons secundários podem ser de uma energia muito alta e podem induzir eventos de fragmentação em materiais ao nível do solo. Portanto, na vizinhança de objetos maiores e mais pesados, esses múltiplos nêutrons produzidos em eventos de fragmentação são chamados de nêutrons de “efeito navio” .

Os nêutrons produzidos na atmosfera superior também são responsáveis ​​pela geração de carbono radioativo-14, que é o radionuclídeo cosmogênico mais conhecido. O carbono-14 é formado continuamente na atmosfera superior pela interação dos raios cósmicos com o nitrogênio atmosférico. Em média, apenas um em cada 1,3 x 10 12átomos de carbono na atmosfera é um átomo de carbono-14 radioativo. Como resultado, todas as substâncias biológicas vivas contêm a mesma quantidade de C-14 por grama de carbono, ou seja, 0,3 Bq de atividade do carbono-14 por grama de carbono. Enquanto o sistema biológico estiver vivo, o nível é constante devido à ingestão constante de todos os isótopos de carbono. Quando o sistema biológico morre, ele para de trocar carbono com o meio ambiente e, a partir desse momento, a quantidade de carbono-14 que ele contém começa a diminuir à medida que o carbono-14 sofre decaimento radioativo.

Energia dos Raios Cósmicos

Observou-se que as energias dos raios cósmicos mais energéticos de ultra alta energia (UHECRs) se aproximam de 3 x 10 20 eV, cerca de 40 milhões de vezes a energia das partículas aceleradas pelo Large Hadron Collider. A origem das partículas de alta energia é do espaço sideral. Supõe-se que partículas com uma energia de até 10 15 eV sejam provenientes de nossa própria galáxia, enquanto aquelas com as energias mais altas provavelmente têm uma origem extragalática.

Classificação da radiação cósmica

A radiação cósmica pode ser dividida em diferentes tipos, de acordo com sua origem. Existem três fontes principais dessa radiação:

  • Radiação Cósmica Solar . A radiação cósmica solar refere-se a fontes de radiação na forma de partículas de alta energia (predominantemente prótons) emitidas pelo sol, principalmente em eventos de partículas solares (SPEs).
  • Radiação Cósmica Galáctica . A radiação cósmica galáctica, GCR, refere-se a fontes de radiação na forma de partículas de alta energia originárias fora do sistema solar, mas geralmente de dentro da nossa galáxia Via Láctea.
  • Radiação dos cinturões de radiação da Terra (cinturões de van Allen ). As correias de radiação Van Allen são zonas de partículas de alta energia (especialmente prótons) presas pelo campo magnético da Terra.

Radiação Cósmica Galáctica

Radiação cósmica galáctica , GCR, refere-se a fontes de radiação na forma de partículas de alta energia originárias fora do sistema solar. GCR são núcleos de alta energia dos quais todos os elétrons ao redor foram arrancados durante sua passagem em alta velocidade pela galáxia. O incidente da GCR na atmosfera superior consiste em um componente nucleônico, que agrega responsáveis ​​por 98% do total (2% são elétrons). O componente nucleônico consiste então de uma mistura de prótons de alta energia (~ 86%), partículas alfa (~ 12%) e um traço de núcleos mais pesados ​​(~ 1%). Os GCR estão presos no campo magnético galáctico, portanto, provavelmente foram acelerados nos últimos milhões de anos e viajaram muitas vezes pela galáxia. O mecanismo de aceleração deles é incerto, mas um dos mecanismos possíveis é que as partículas sejam aceleradas por ondas de choque que se expandem das supernovas. A energia dessas partículas varia entre 108 eV e 10 20 eV. Uma fração muito pequena são partículas estáveis ​​de antimatéria, como pósitrons ou antiprótons.

A natureza precisa dessa fração restante é uma área de pesquisa ativa. A taxa de fluência GCR varia com a atividade solar, sendo mais baixa quando a atividade solar é maior. No mínimo solar, devido à menor proteção do campo magnético solar, a fluência é significativamente maior do que no máximo solar.

Radiação Cósmica Solar – Evento de Partículas Solares

A radiação cósmica solar refere-se a fontes de radiação na forma de partículas de alta energia (predominantemente prótons) emitidas pelo Sol , principalmente em eventos de partículas solares (SPEs). O incidente de radiação solar na atmosfera superior consiste principalmente de prótons (99%), com energias geralmente abaixo de 100 MeV. Eventos de partículas solares, por exemplo, ocorrem quando os prótons emitidos pelo Sol se aceleram perto do Sol durante uma explosão ou no espaço interplanetário por choques de ejeção de massa coronal. Observe que o Sol tem um ciclo de 11 anos, que culmina em um aumento dramático no número e na intensidade das explosões solares, especialmente durante os períodos em que existem inúmeras manchas solares.

A radiação solar é um risco significativo de radiação para naves espaciais e astronautas, também produz taxas de dose significativas em grandes altitudes, mas apenas a radiação mais energética contribui para doses ao nível do solo. Observe que qualquer pessoa que estivesse na superfície da Lua durante uma erupção solar particularmente violenta em 2005 teria recebido uma dose letal .

Radiação dos cinturões de radiação da Terra – cinturões de Van Allen

correias de radiação van Allen - satélites
Fonte: nasa.gov Licença: Public Domain

As correias de radiação Van Allen são zonas de partículas de alta energia (especialmente prótons) presas pelo campo magnético da Terra . A maioria dessas partículas de alta energia se origina do vento solar, capturado e mantido em torno de um planeta pelo campo magnético da terra. O cinto de van Allen é formado como um toro acima do equador. Existem dois cinturões de radiação van Allen, um cinturão interno centralizado a cerca de 3.000 quilômetros e um cinturão externo centralizado a cerca de 22.000 quilômetros da superfície terrestre. Ele contém principalmente prótons energéticos na faixa de 10 a 100 MeV.

As naves espaciais que viajam além da órbita baixa da Terra entram na zona de radiação dos cinturões de Van Allen. Além dos cintos, eles enfrentam riscos adicionais de raios cósmicos e eventos de partículas solares. Uma região entre as correias interna e externa de Van Allen fica de dois a quatro raios terrestres e às vezes é chamada de “zona segura”.

Taxa de Dose no Avião – Radiação em Voo

A exposição à radiação cósmica aumenta rapidamente com a altitude. Em vôo, há duas fontes principais de radiação natural a serem consideradas: os Raios Cósmicos Galácticos, sempre presentes, e os Eventos de Próton Solar, às vezes chamados de eventos do Raio Cósmico Solar (SCR), que ocorrem esporadicamente. A taxa de dose da radiação cósmica varia em diferentes partes do mundo e depende fortemente do campo geomagnético, altitude e ciclo solar. O campo de radiação nas altitudes das aeronaves consiste em nêutrons, prótons e pions. Em vôo, os nêutrons contribuem com 40 – 80% da dose equivalente, dependendo do campo geomagnético, altitude e ciclo solar. A taxa de dose de radiação cósmica nos aviões é tão alta (mas não perigosa) que, de acordo com o Relatório das Nações Unidas UNSCEAR 2000, os funcionários das equipes de aviação recebem mais dose, em média, do que qualquer outro trabalhador, inclusive os das usinas nucleares.

A taxa de dose no nível do solo é, em média, de 0,10 μSv / h, mas na altitude máxima de vôo (8,8 km ou 29.000 pés), pode atingir cerca de 2,0 μSv / h (ou valores ainda mais altos). Uma taxa de dose de 4 μSv / h pode ser usada para representar a taxa média de dose para todos os voos de longo curso (devido a maiores altitudes). Deve-se acrescentar que, para aviões supersônicos como o Concorde, que poderiam realizar um vôo transatlântico em 3,5 horas, a taxa de exposição (cerca de 9 μSv / h ) na altitude de 18 km foi aumentada o suficiente para resultar na mesma exposição a raios cósmicos por cruzando como nos jatos convencionais, rodando cerca de 8 km.

Blindagem de radiação cósmica

magnetosfera - campo magnético da terra
Renderização artística da estrutura de uma magnetosfera: 1) Choque de arco. 2) Magnetosheath. 3) Magnetopausa. 4) Magnetosfera. 5) Lobo da cauda norte. 6) Lobo da cauda sul. 7) Plasmasfera. Fonte: nasa.gov Licença: Public Domain

O campo magnético da Terra fornece um escudo de radiação vital da radiação cósmica. Além de uma atmosfera protetora, também temos sorte de a Terra ter um campo magnético. O campo magnético se estende a dezenas de milhares de quilômetros no espaço, protegendo a Terra das partículas carregadas do vento solar e dos raios cósmicos que, de outra forma, removeriam a atmosfera superior, incluindo a camada de ozônio que protege a Terra da radiação ultravioleta prejudicial. Ele nos protege dos efeitos totais do vento solar e da GCR. Sem essa proteção, a biosfera da Terra pode não existir como existe hoje, ou seria pelo menos limitada à subsuperfície. O campo magnético da Terra também fornece um escudo de radiação para os astronautas e a própria ISS, porque está em baixa órbita da Terra.

Cálculos da perda de dióxido de carbono da atmosfera de Marte, resultante da eliminação de íons pelo vento solar, indicam que a dissipação do campo magnético de Marte causou uma perda quase total de sua atmosfera.

Radiação Cósmica – É perigoso?

Devemos enfatizar que comer bananas, trabalhar como tripulação de voo de uma companhia aérea ou morar em locais com isso aumenta sua taxa de dose anual. Mas isso não significa que deve ser perigoso. Em cada caso, a intensidade da radiação também é importante. É muito semelhante ao calor de um incêndio (menos radiação energética). Se você estiver muito próximo, a intensidade da radiação de calor é alta e você pode se queimar. Se você estiver na distância certa, você pode suportar sem problemas e, além disso, é confortável. Se você estiver muito longe da fonte de calor, a insuficiência de calor também poderá prejudicá-lo. Essa analogia, em certo sentido, pode ser aplicada à radiação também de fontes de radiação.

Modelo LNT e Modelo Hormesis
Pressupostos alternativos para a extrapolação do risco de câncer vs. dose de radiação para níveis de dose baixa, considerando um risco conhecido em dose alta: modelo LNT e modelo hormesis.

No caso de radiação dos raios cósmicos , estamos falando das chamadas “doses baixas” . Dose baixa aqui significa doses pequenas adicionais comparáveis ​​à radiação normal de fundo ( 10 µSv = dose diária média recebida de fundo natural). As doses são muito baixas e, portanto, a probabilidade de indução de câncer pode ser quase insignificante. Em segundo lugar, e isso é crucial, a verdade sobre os efeitos na saúde de baixa dose de radiação ainda precisa ser encontrada. Não se sabe exatamente se essas baixas doses de radiação são prejudiciais ou benéficas (e onde está o limiar). Órgãos governamentais e reguladores assumem um modelo LNT em vez de um limite ou hormesisnão porque é a mais cientificamente convincente, mas porque é a estimativa mais conservadora . O problema desse modelo é que ele negligencia uma série de processos biológicos de defesa que podem ser cruciais em baixas doses . A pesquisa nas últimas duas décadas é muito interessante e mostra que pequenas doses de radiação administradas em uma taxa de dose baixa estimulam os mecanismos de defesa . Portanto, o modelo LNT não é universalmente aceito, com alguns propondo uma relação dose-resposta adaptativa, em que baixas doses são protetoras e altas são prejudiciais. Muitos estudos contradizem o modelo LNT e muitos deles mostraram resposta adaptativa a baixas doses de radiação, resultando em mutações e cânceres reduzidos. Esse fenômeno é conhecido comohormesis de radiação .

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é radiação natural de fundo – Definição

A radiação natural de fundo é a radiação ionizante, originária de uma variedade de fontes naturais. Esta radiação não está associada a nenhuma atividade humana. Dosimetria de Radiação

Fontes de radiação natural e artificialA radiação está à nossa volta . Dentro, ao redor e acima do mundo em que vivemos. É uma força de energia natural que nos rodeia. É uma parte do nosso mundo natural que está aqui desde o nascimento do nosso planeta. Todas as criaturas vivas, desde o início dos tempos, foram e ainda estão sendo expostas a radiação ionizante . A radiação ionizante é gerada por reações nucleares , decaimento nuclear , por temperaturas muito altas ou por aceleração de partículas carregadas em campos eletromagnéticos.

Radiação de fundo natural

A radiação natural de fundo é a radiação ionizante, originária de uma variedade de fontes naturais. Todas as criaturas vivas, desde o início dos tempos, foram e ainda estão sendo expostas a radiação ionizante . Esta radiação não está associada a nenhuma atividade humana. Existem isótopos radioativos em nossos corpos, casas, ar, água e no solo. Todos nós também estamos expostos à radiação do espaço sideral.

Fontes de radiação natural de fundo

Dividimos todas essas fontes naturais de radiação em três grupos:

Radiação Cósmica

Radiação Cósmica - Fonte Natural de Radiação
Fonte: nasa.gov Licença: Public Domain

A radiação cósmica refere-se a fontes de radiação na forma de raios cósmicos que vêm do sol ou do espaço sideral. No nível do solo, os  múons , com energias principalmente entre 1 e 20 GeV, contribuem com cerca de 75% da taxa de dose absorvida no ar livre. O restante vem de elétrons produzidos pelos múons ou presentes na cascata eletromagnética. A dose anual de raios cósmicos   ao nível do mar é de cerca de  0,27 mSv  (27 mrem). Se você mora em elevações mais altas ou é um passageiro frequente de uma companhia aérea, essa exposição pode ser significativamente maior, pois a atmosfera é mais fina aqui. Os efeitos do  campo magnético da Terra  também determinam a dose da  radiação cósmica .

A radiação cósmica pode ser dividida em diferentes tipos de acordo com sua origem. Existem três fontes principais dessa radiação:

  • Radiação Cósmica Solar . A radiação cósmica solar refere-se a fontes de radiação na forma de partículas de alta energia (predominantemente prótons) emitidas pelo sol, principalmente em eventos de partículas solares (SPEs).
  • Radiação Cósmica Galáctica . A radiação cósmica galáctica, GCR, refere-se a fontes de radiação na forma de partículas de alta energia originárias fora do sistema solar, mas geralmente de dentro da nossa galáxia Via Láctea.
  • Radiação dos cinturões de radiação da Terra (cinturões de van Allen ). As correias de radiação Van Allen são  zonas de partículas de alta energia (especialmente prótons) presas pelo campo magnético da Terra.

Fundo natural no avião – radiação em voo

A exposição à  radiação cósmica  aumenta rapidamente com a altitude. Em vôo, há duas fontes principais de radiação natural a serem consideradas: os  Raios Cósmicos Galácticos,  sempre presentes, e os Eventos de Próton Solar, às vezes chamados de eventos do Raio Cósmico Solar (SCR), que ocorrem esporadicamente. A taxa de dose da radiação cósmica varia em diferentes partes do mundo e depende fortemente do campo geomagnético, altitude e ciclo solar. O campo de radiação nas altitudes das aeronaves consiste em nêutrons, prótons e pions. Em vôo, os  nêutrons contribuem com 40 – 80%  da  dose equivalente, dependendo do campo geomagnético, altitude e ciclo solar. A taxa de dose de radiação cósmica nos aviões é tão alta (mas não perigosa) que, de acordo com o Relatório das Nações Unidas UNSCEAR 2000, os funcionários das equipes de aviação recebem mais dose, em média, do que qualquer outro trabalhador, inclusive os das usinas nucleares.

A taxa de dose no nível do solo é, em média, de 0,10 μSv / h, mas na altitude máxima de vôo (8,8 km ou 29.000 pés), pode atingir cerca de  2,0 μSv / h  (ou valores ainda mais altos). Uma taxa de dose de  4 μSv / h  pode ser usada para representar a taxa média de dose para todos os voos de longo curso (devido a maiores altitudes). Deve-se acrescentar que, para aviões supersônicos como o Concorde, que poderiam realizar um vôo transatlântico em 3,5 horas, a taxa de exposição (cerca de  9 μSv / h ) na altitude de 18 km foi aumentada o suficiente para resultar na mesma exposição a raios cósmicos por cruzando como nos jatos convencionais, rodando cerca de 8 km.

Campo Magnético da Terra como Escudo de Radiação

magnetosfera - campo magnético da terra
Renderização artística da estrutura de uma magnetosfera: 1) Choque de arco. 2) Magnetosheath. 3) Magnetopausa. 4) Magnetosfera. 5) Lobo da cauda norte. 6) Lobo da cauda sul. 7) Plasmasfera. Fonte: nasa.gov Licença: Public Domain

O campo magnético da Terra  fornece um escudo de radiação vital da radiação cósmica. Além de uma atmosfera protetora, também temos sorte de a Terra ter um campo magnético. O campo magnético se estende a dezenas de milhares de quilômetros no espaço, protegendo a Terra das partículas carregadas do vento solar e dos raios cósmicos que, de outra forma, removeriam a atmosfera superior, incluindo a camada de ozônio que protege a Terra da radiação ultravioleta prejudicial. Ele nos protege dos efeitos totais do vento solar e da GCR. Sem essa proteção, a biosfera da Terra pode não existir como existe hoje, ou seria pelo menos limitada à subsuperfície. O campo magnético da Terra também fornece um escudo de radiação para os astronautas e a própria ISS, porque está em baixa órbita da Terra.

Cálculos da perda de dióxido de carbono da atmosfera de Marte, resultante da eliminação de íons pelo vento solar, indicam que a dissipação do campo magnético de Marte causou uma perda quase total de sua atmosfera.

Radiação Terrestre

Radiação terrestre refere-se a fontes de radiação que estão no solo, na água e na vegetação. Os principais isótopos preocupantes da radiação terrestre são o urânio e os produtos de decomposição do urânio, como tório, rádio e rádon. A taxa de dose média que se origina dos nuclídeos terrestres (exceto a exposição ao radônio) é de cerca de  0,057 µGy / h. Os valores máximos foram medidos na areia de monazita em Guarapari, Brasil (até 50 µGy / hora e em Kerala, Índia (cerca de 2 µGy / hora), e em rochas com alta concentração de rádio em Ramsar, Irã (de 1 a 10 µGy / hr).

radão - mitigação - casa
O gás radônio pode penetrar na casa através de rachaduras (devido a um efeito de chaminé) no chão e nas paredes do porão. Fonte: suro.cz

A dose média anual de radiação para uma pessoa a partir de radônio é de cerca de  2 mSv / ano  e pode variar em várias ordens de magnitude de um lugar para outro. O radônio é tão importante que geralmente é tratado separadamente. O rádon  é um gás nobre incolor, inodoro e insípido  , que escorre continuamente da rocha, mas pode, devido à sua alta densidade, acumular-se em casas com pouca ventilação. O fato de o  radônio ser gás  desempenha um papel crucial na disseminação de todos os seus núcleos filhos. O Simply Radon é um meio de transporte da rocha para a atmosfera (ou dentro de edifícios) por seus produtos de decaimento de curta duração ( Pb-210  e  Po-210 ), que apresentam muito mais riscos à saúde.

Radiação Interna

Além das fontes cósmicas e terrestres, todas as pessoas também têm potássio radioativo-40, carbono-14, chumbo-210 e outros isótopos dentro de seus corpos desde o nascimento.

Esses isótopos são especialmente  potássio-40 , carbono-14 e também os isótopos de urânio e tório. A variação na dose de radiação de uma pessoa para outra não é tão grande quanto a variação na dose de fontes cósmicas e terrestres. A dose média anual de radiação para uma pessoa de materiais radioativos internos que não o rádon é de cerca de  0,3 mSv / ano,  dos quais:

  • 0,2 mSv / ano vem de potássio-40,
  • 0,12 mSv / ano provém das séries de urânio e tório,
  • 12 μSv / ano vem do carbono-40.

Radiação de fundo e riscos à saúde

Você não pode passar a vida sem radiação. O perigo de radiação ionizante reside no fato de que a radiação é invisível e não diretamente detectável pelos sentidos humanos. As pessoas não podem ver nem sentir radiação, mas ela deposita energia nas moléculas do corpo.

Modelo LNT e Modelo Hormesis
Pressupostos alternativos para a extrapolação do risco de câncer vs. dose de radiação para níveis de dose baixa, considerando um risco conhecido em dose alta: modelo LNT e modelo hormesis.

Mas não se preocupe , as doses da radiação de fundo geralmente são  muito pequenas (exceto a exposição ao radônio). Dose baixa aqui significa doses pequenas adicionais comparáveis ​​à radiação normal de  fundo  ( 10 µSv  = dose diária média recebida de fundo natural). O problema é que, em doses muito baixas, é praticamente impossível correlacionar qualquer irradiação com certos efeitos biológicos. Isso ocorre porque a taxa de câncer de linha de base já é muito alta e o risco de desenvolver câncer flutua 40% devido ao estilo de vida individual e aos efeitos ambientais, obscurecendo os efeitos sutis da radiação de baixo nível.

Em segundo lugar, e isso é crucial, a verdade sobre os efeitos na saúde de baixa dose de radiação ainda precisa ser encontrada. Não se sabe exatamente se essas baixas doses de radiação são prejudiciais ou benéficas (e onde está o limiar). Os órgãos governamentais e reguladores assumem um modelo LNT em vez de um limiar ou hormesis, não porque é o mais convincente cientificamente, mas porque é a estimativa mais conservadora . O problema desse modelo é que ele negligencia uma série de processos biológicos de  defesa  que podem ser cruciais  em baixas doses . A pesquisa nas últimas duas décadas é muito interessante e mostra que pequenas doses de radiação administradas a uma taxa de dose baixa  estimulam os mecanismos de defesa. Portanto, o modelo LNT não é universalmente aceito, com alguns propondo uma relação dose-resposta adaptativa, em que baixas doses são protetoras e altas são prejudiciais. Muitos estudos contradizem o modelo LNT e muitos deles mostraram resposta adaptativa a baixas doses de radiação, resultando em mutações e cânceres reduzidos. Este fenômeno é conhecido como  hormesis de radiação .

De acordo com a hipótese da radiação hormonal , a exposição à radiação comparável e logo acima do nível natural de radiação de fundo não é prejudicial, mas benéfica, embora se aceite que níveis muito mais altos de radiação são perigosos. Os argumentos para a hormesis estão centrados em alguns estudos epidemiológicos em larga escala e nas evidências de experimentos de irradiação animal, mas principalmente nos recentes avanços no conhecimento da resposta adaptativa. Os proponentes da hormesis de radiação geralmente afirmam que as respostas de proteção radiofotográfica nas células e no sistema imunológico não apenas combatem os efeitos nocivos da radiação, mas também agem para inibir o câncer espontâneo não relacionado à exposição à radiação.

Veja também: Modelo LNT

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é reação nuclear – Quiz – Teste seu conhecimento – Definição

Teste seu conhecimento – reações nucleares. Com nossos testes simples, você pode testar seus conhecimentos. É intuitivo: inicie o teste e responda a perguntas. Dosimetria de Radiação

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é a dinâmica do reator – Quiz – Teste seu conhecimento – Definição

Teste seu conhecimento – Dinâmica do reator. Com nossos testes simples, você pode testar seus conhecimentos. É intuitivo: inicie o teste e responda a perguntas. Dosimetria de Radiação

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é contaminação radioativa – definição

A contaminação radioativa é referida como a presença de substâncias radioativas indesejadas em superfícies ou dentro de sólidos (incluindo o corpo humano), líquidos ou gases, onde a presença deles é involuntária ou indesejável. Dosimetria de Radiação
contaminação radioativa
A contaminação radioativa consiste em material radioativo, que gera radiação ionizante. É a fonte de radiação, não a própria radiação.

A contaminação é geralmente referida como a presença de um componente indesejável, substância nociva ou impureza em um local (material, corpo físico, ambiente natural, local de trabalho) onde não se destina ou se deseja que seja. A contaminação tem um significado muito mais geral, pois pode ser definida em disciplinas como química, proteção ambiental, proteção contra radiação ou agricultura.

A contaminação radioativa é referida como a presença de substâncias radioativas indesejadas em superfícies ou dentro de sólidos (incluindo o corpo humano), líquidos ou gases, onde a presença deles é involuntária ou indesejável. A contaminação radioativa consiste em átomos radioativos (material) que escaparam do sistema ou estrutura que normalmente os conteria. Como a contaminação radioativa é material radioativo, a radiação ionizante é emitida pela contaminação. É muito importante qual material (qual radioisótopo) é o contaminante radioativo. Também é muito importante distinguir entre contaminação radioativa e radiação em si .

Contaminação versus radiação

A contaminação radioativa consiste em material radioativo, que gera radiação ionizante. É a fonte de radiação, não a própria radiação. Sempre que o material radioativo não estiver em um contêiner de fonte radioativa selado e possa se espalhar para outros objetos, a contaminação radioativa é uma possibilidade. A contaminação radioativa pode ser caracterizada pelos seguintes pontos:

  • A contaminação radioativa consiste em material radioativo (contaminantes), que pode ser sólido, líquido ou gasoso. Contaminantes grandes podem ser visíveis, mas você não pode ver a radiação produzida.
  • Quando liberados, os contaminantes podem se espalhar pelo ar, pela água ou apenas por contato mecânico.
  • Não podemos proteger a contaminação.
  • Podemos mitigar a contaminação protegendo a integridade das barreiras (contêiner de origem, revestimento de combustível, vaso do reator , prédio de contenção )
  • Como os contaminantes interagem quimicamente, eles podem estar contidos em objetos como o corpo humano.
  • Podemos nos livrar da contaminação por muitos processos mecânicos, químicos (descontaminar superfícies) ou biológicos ( meia-vida biológica ).
  • É da maior importância, qual material é o contaminante radioativo ( meia-vida , modo de decomposição, energia).

A radiação ionizante é formada por partículas de alta energia ( fótons , elétrons , etc. ), que podem penetrar na matéria e ionizar (formar íons pela perda de elétrons), direcionar átomos para formar íons. A exposição à radiação é a consequência da presença próxima à fonte de radiação. A exposição à radiação como quantidade é definida como uma medida da ionização do material devido à radiação ionizante. O perigo de radiação ionizante reside no fato de que a radiação é invisívele não diretamente detectável pelos sentidos humanos. As pessoas não podem ver nem sentir radiação, mas ela deposita energia nas moléculas do corpo. A energia é transferida em pequenas quantidades para cada interação entre radiação e uma molécula e geralmente existem muitas dessas interações. Ao contrário da contaminação radioativa, a radiação pode ser caracterizada pelos seguintes pontos:

  • A radiação consiste em partículas de alta energia que podem penetrar na matéria e ionizar (para formar íons pela perda de elétrons) os átomos-alvo. A radiação é invisível e não diretamente detectável pelos sentidos humanos. Deve-se notar que a radiação beta é indiretamente visível devido à radiação cherenkov .
  • Ao contrário da contaminação, a radiação não pode ser espalhada por nenhum meio. Viaja através dos materiais até perder sua energia. Podemos proteger a radiação (por exemplo, ao virar a esquina).
  • A exposição à ionização não significa necessariamente que o objeto se torne radioativo (exceto a radiação de nêutrons muito rara).
  • A radiação pode penetrar barreiras, mas uma barreira suficientemente espessa pode minimizar todos os efeitos.
  • Ao contrário dos contaminantes, a radiação não pode interagir quimicamente com a matéria e não pode ser ligada ao corpo.
  • Não é importante qual material é a fonte de certa radiação. Apenas o tipo de radiação e energia é importante.

Há uma característica comum: a radiação natural e os contaminantes naturais estão à nossa volta . Dentro, ao redor e acima do mundo em que vivemos. É uma força de energia natural que nos rodeia. É uma parte do nosso mundo natural que está aqui desde o nascimento do nosso planeta. Todas as criaturas vivas, desde o início dos tempos, foram e ainda estão sendo expostas a radiação ionizante . A radiação natural de fundo é a radiação ionizante, originária de uma variedade de fontes naturais. Todas as criaturas vivas, desde o início dos tempos, foram e ainda estão sendo expostas a radiação ionizante. Esta radiação não está associada a nenhuma atividade humana. Existem isótopos radioativos em nossos corpos, casas, ar, água e no solo. Todos nós também estamos expostos à radiação do espaço sideral.

Tipos de contaminação

Podem existir materiais radioativos em superfícies ou em volumes de material ou ar, e técnicas especializadas são usadas para medir os níveis de contaminação pela detecção da radiação emitida. Podemos distinguir entre os seguintes tipos de contaminação:

Contaminação de superfície

Contaminação de superfície significa que o material radioativo foi depositado em superfícies (como paredes, pisos). Pode ser pouco depositado, como a poeira comum, ou pode ser fixado com firmeza por reação química. Essa distinção é importante e classificamos a contaminação da superfície com base na facilidade com que ela pode ser removida:

  • Contaminação livre . No caso de contaminação livre (ou contaminação solta), o material radioativo pode ser espalhado. É a contaminação da superfície que pode ser facilmente removida com métodos simples de descontaminação. Por exemplo, se partículas de poeira contendo vários radioisótopos caírem na pele ou nas roupas da pessoa, podemos limpá-la ou remover a roupa. Depois que uma pessoa é descontaminada, todas as fontes de radioatividade de partículas são eliminadas e o indivíduo não é mais contaminado. A contaminação livre também é um risco mais sério do que a contaminação fixa, porque as partículas de poeira podem se tornar transportadas pelo ar e podem ser facilmente ingeridas. Isso leva a uma exposição interna por contaminantes radioativos. Embora quase todos os contaminantes sejam beta radioativos com osemissão gama , mas também existe a possibilidade de contaminação alfa em qualquer área de manuseio de combustível nuclear.
  • Contaminação Fixa . No caso de contaminação fixa, o material radioativo não pode ser espalhado, pois está ligado quimicamente ou mecanicamente às estruturas. Não pode ser removido pelos métodos normais de limpeza. A contaminação fixa é um risco menos sério do que a contaminação livre, não pode ser ressuspensa ou transferida para a pele. Portanto, o risco geralmente é apenas externo. Por outro lado, depende do nível de contaminação. Embora quase todos os contaminantes sejam beta radioativos com as emissões gama, mas também há a possibilidade de contaminação alfa em qualquer área de manuseio de combustível nuclear. A menos que o nível de contaminação seja muito grave, a taxa de dose de radiação gama será pequena e a exposição externa será significativa apenas em contato com, ou muito próximo, das superfícies contaminadas. Como as partículas beta são menos penetrantes que os raios gama , a taxa de dose beta pode ser alta apenas em contato. Um valor de 1 mSv / h em contato para um nível de contaminação de 400 – 500 Bq / cm 2 é bastante representativo.

 

Contaminação no ar

Esse tipo de contaminação é de particular importância nas usinas nucleares , onde deve ser monitorado. Os contaminantes podem ficar no ar, especialmente durante a remoção da cabeça do reator, reabastecimento do reator e durante as manipulações dentro do tanque de combustível usado. O ar pode ser contaminado com isótopos radioativos, especialmente na forma de partículas, o que representa um risco particular de inalação . Essa contaminação consiste em vários produtos de fissão e ativação que entram no ar na forma gasosa, de vapor ou de partículas. Existem quatro tipos de contaminação aérea nas usinas nucleares, a saber:

  • Partículas . A atividade de partículas é um risco interno, porque pode ser inalado. O material particulado transportável levado para o sistema respiratório entrará na corrente sanguínea e será transportado para todas as partes do corpo. Partículas não transportáveis ​​permanecerão nos pulmões com uma certa meia-vida biológica. Por exemplo, Sr-90, Ra-226 e Pu-239 são radionuclídeos conhecidos como radionuclídeos que procuram ossos. Esses radionuclídeos têm meia-vida biológica longa e são sérios riscos internos. Uma vez depositados no osso, eles permanecem lá em quantidade essencialmente inalterada durante a vida do indivíduo. A ação continuada das partículas alfa emitidas pode causar lesões significativas: ao longo de muitos anos, eles depositam toda a sua energia em um pequeno volume de tecido, porque o alcance das partículas alfa é muito curto.
  • Gases nobres . Gases nobres radioativos, como xenon-133 , xenon-135 e   krypton-85, estão presentes no líquido de arrefecimento do reator, especialmente quando há vazamentos de combustível. À medida que aparecem no líquido de arrefecimento, ficam no ar e podem ser inalados. Eles são exalados logo após serem inalados, porque o corpo não reage quimicamente com eles. Se os trabalhadores estiverem trabalhando em uma nuvem de gás nobre, a dose externa que eles receberão será cerca de 1000 vezes maior que a dose interna. Por esse motivo, estamos preocupados apenas com as taxas externas de dose beta e gama.
  • Iodo 131 - esquema de decaimentoRadioiodine . O radioiodo , iodo-131 , é um radioisótopo importante do iodo. O radioiodo desempenha um papel importante como isótopo radioativo presente nos produtos de fissão nuclear e é um dos principais contribuintes para os riscos à saúde quando liberado na atmosfera durante um acidente. O iodo-131 tem uma meia-vida de 8,02 dias. O tecido alvo da exposição ao radioiodo é a glândula tireóide. A dose beta e gama externa do radioiodo presente no ar é bastante insignificante quando comparada à dose comprometida da tireóide que resultaria da respiração desse ar. A meia-vida biológicapara o iodo dentro do corpo humano é de cerca de 80 dias (de acordo com o ICRP). O iodo nos alimentos é absorvido pelo organismo e preferencialmente concentrado na tireóide, onde é necessário para o funcionamento dessa glândula. Quando o 131 I está presente em altos níveis no ambiente devido a precipitação radioativa, ele pode ser absorvido através de alimentos contaminados e também se acumulará na tireóide. O 131 I decai com uma meia-vida de 8,02 dias com partículas beta e emissões gama. À medida que se deteriora, pode causar danos à tireóide. O principal risco da exposição a altos níveis de 131 I é a ocorrência casual de câncer de tireóide radiogênico mais tarde na vida. Para 131 I, o ICRP calculou que se você inalar 1 x 10 6Bq, você receberá uma dose de H T = 400 mSv na tireóide (e uma dose ponderada de 20 mSv no corpo inteiro).
  • Trítio. O trítio é um subproduto dos reatores nucleares . A fonte mais importante (devido à liberação de água tritiada) de trítio em usinas nucleares deriva do ácido bórico , que é comumente usado como calço químicopara compensar um excesso de reatividade inicial. Observe que o trítio emite partículas beta de baixa energia com um curto intervalo nos tecidos do corpo e, portanto, representa um risco para a saúde como resultado da exposição interna apenas após ingestão de água potável ou comida ou inalação ou absorção pela pele. O trítio tomado no corpo é distribuído uniformemente entre todos os tecidos moles. Segundo o ICRP, um intervalo biológico de trítio é de 10 dias para o HTO e 40 dias para o OBT (trítio ligado organicamente) formado a partir do HTO no corpo dos adultos. Como resultado, para uma ingestão de 1 x 10 9 Bq de trítio (HTO), um indivíduo receberá uma dose de 20 mSv no corpo inteiro (igual à ingestão de 1 x 10 6 Bq de 131 I). Enquanto para os PWRs o trítio representa um risco menor para a saúde, porreatores de água pesada , contribui significativamente para a dose coletiva de trabalhadores da planta. Observe que “o ar que está saturado com água moderadora a 35 ° C pode fornecer 3.000 mSv / h de trítio a um trabalhador desprotegido (consulte também: JUBurnham. Proteção contra radiação). A melhor proteção contra o trítio pode ser alcançada usando um respirador com fornecimento de ar. Os respiradores com cartucho de trítio protegem os trabalhadores apenas por um fator de 3. A única maneira de reduzir a absorção da pele é usando plásticos. Nas usinas de energia PHWR, os trabalhadores devem usar plásticos para trabalhar em atmosferas que contenham mais de 500 μSv / h.

Respiradores com filtros de ar adequados ou roupas completamente independentes com suprimento de ar próprio podem atenuar os perigos da contaminação transportada pelo ar. A contaminação transportada pelo ar é geralmente medida por instrumentos radiológicos especiais que bombeiam continuamente o ar amostrado através de um filtro. Os instrumentos que fazem isso são chamados de Continuous Air Monitors (CAM). As partículas radioativas no ar são coletadas no filtro, onde a atividade é medida por um detector colocado próximo ao filtro.

Veja também: Concentração de ar derivada

Vide também: Limite anual de consumo

Descontaminação

A descontaminação é um processo usado para reduzir ou remover a contaminação radioativa para reduzir o risco de exposição à radiação. A remoção da contaminação das áreas ocupadas, equipamentos e pessoal é importante para manter uma dose de radiação ionizante tão baixa quanto razoavelmente possível (ALARA). A descontaminação também reduz os níveis de radiação de fundo, o inventário de materiais radioativos e a disseminação da contaminação para áreas não controladas, equipamentos e pessoal.

A descontaminação pode ser realizada limpando ou tratando as superfícies para reduzir ou remover a contaminação. Isso também pode ser realizado filtrando o ar ou a água contaminada ou cobrindo a contaminação para proteger ou absorver a radiação. O processo também pode simplesmente permitir tempo adequado para que o decaimento radioativo natural diminua a radioatividade.

Nas usinas nucleares , é inevitável que muitos itens de equipamento e também ferramentas, roupas, áreas de trabalho e até pessoas sejam contaminados. Isso é bastante comum, pois parte do material radioativo fica preso às superfícies (por exemplo, a sola de um sapato). Nesse caso, os trabalhadores são monitorados continuamente e, nesse caso, a contaminação da superfície deve ser removida. Podemos nos livrar da contaminação por muitos mecânicos, químicos (descontaminar superfícies). Processos biológicos ( meia-vida biológica) sempre trabalhe em caso de contaminação interna. Uma pessoa se torna ‘radioativa’ se partículas de poeira contendo vários radioisótopos pousam na pele ou nas roupas da pessoa. Depois que uma pessoa é descontaminada por remoção de roupas e lavagem dérmica, todas as fontes de radioatividade de partículas são eliminadas e o indivíduo não é mais contaminado.

Técnicas de descontaminação

Em geral, existem muitas técnicas e equipamentos usados ​​para descontaminação de superfícies e pessoas. De qualquer forma, o tipo de contaminação e o material contaminado são importantes. Por exemplo, é muito difícil descontaminar materiais porosos. Como orientação geral ao leitor, essas técnicas de descontaminação e suas principais aplicações são destacadas em:

Referência especial: Tecnologia de ponta para descontaminação e desmantelamento de instalações nucleares, AIEA. IAEA Vienna, 1999. ISBN 92–0–102499–1.

  • Descontaminação química . A descontaminação química é um dos melhores métodos para a maioria das operações de descontaminação: limpar com água à qual um ou mais agentes químicos adequados de limpeza foram adicionados. Esses métodos incluem descontaminação usando soluções químicas, géis químicos, descontaminação de espuma, etc. A remoção da contaminação do pessoal deve ser feita com cuidado para garantir que a pele não seja danificada e para evitar que a contaminação entre no corpo ou ferida.
  • Descontaminação mecânica . A descontaminação mecânica pode ser usada especialmente para descontaminação industrial. Existem métodos de descontaminação nos quais a camada externa da superfície contaminada é removida por força física. Tais métodos são eficazes, mas são um tanto brutos e destrutivos, e talvez não seja possível usá-los em objetos delicados. Esses métodos incluem descontaminação usando limpeza a vapor, limpeza abrasiva, jateamento de areia, aspiração, limpeza ultrassônica etc.

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é contaminação de superfície – Definição

Contaminação de superfície significa que material radioativo foi depositado em superfícies (como paredes, pisos). Pode ser pouco depositado, como a poeira comum, ou pode ser firmemente fixado por reação química. Dosimetria de Radiação
contaminação radioativa
A contaminação radioativa consiste em material radioativo, que gera radiação ionizante. É a fonte de radiação, não a própria radiação.

Contaminação de superfície

Contaminação de superfície significa que material radioativo foi depositado em superfícies (como paredes, pisos). Pode ser pouco depositado, como a poeira comum, ou pode ser firmemente fixado por reação química. Essa distinção é importante e classificamos a contaminação da superfície com base na facilidade com que ela pode ser removida:

  • Contaminação livre . No caso de contaminação livre (ou contaminação solta), o material radioativo pode ser espalhado. É a contaminação da superfície que pode ser facilmente removida com métodos simples de descontaminação. Por exemplo, se partículas de poeira contendo vários radioisótopos caírem na pele ou nas roupas da pessoa, podemos limpá-la ou remover a roupa. Depois que uma pessoa é descontaminada, todas as fontes de radioatividade de partículas são eliminadas e o indivíduo não é mais contaminado. A contaminação livre também é um risco mais sério do que a contaminação fixa, porque as partículas de poeira podem se tornar transportadas pelo ar e podem ser facilmente ingeridas. Isso leva a uma exposição interna por contaminantes radioativos. Embora quase todos os contaminantes sejam beta radioativos com osemissão gama , mas também existe a possibilidade de contaminação alfa em qualquer área de manuseio de combustível nuclear.
  • Contaminação Fixa . No caso de contaminação fixa, o material radioativo não pode ser espalhado, pois está ligado quimicamente ou mecanicamente às estruturas. Não pode ser removido pelos métodos normais de limpeza. A contaminação fixa é um risco menos sério do que a contaminação livre, não pode ser ressuspensa ou transferida para a pele. Portanto, o risco geralmente é apenas externo. Por outro lado, depende do nível de contaminação. Embora quase todos os contaminantes sejam beta radioativos com as emissões gama associadas, mas também há a possibilidade de contaminação alfa em qualquer área de manuseio de combustível nuclear. A menos que o nível de contaminação seja muito grave, a taxa de dose de radiação gama será pequena e a exposição externa será significativa apenas em contato com, ou muito próximo, das superfícies contaminadas. Como as partículas beta são menos penetrantes que os raios gama , a taxa de dose beta pode ser alta apenas em contato. Um valor de 1 mSv / h em contato para um nível de contaminação de 400 – 500 Bq / cm 2 é bastante representativo.

Cálculo da taxa de dose protegida em sieverts a partir de superfície contaminada

Suponha uma superfície que esteja contaminada por 1,0 Ci de 137 Cs Suponha que esse contaminante possa ser aproximado pela fonte isotrópica pontual que contém 1,0 Ci de 137 Cs , que tem uma meia-vida de 30,2 anos . Observe que a relação entre a meia-vida e a quantidade de radionuclídeo necessária para gerar uma atividade de um curie é mostrada abaixo. Essa quantidade de material pode ser calculada usando λ, que é a constante de decaimento de determinado nuclídeo:

Curie - Unidade de Atividade

Cerca de 94,6% decai por emissão beta em um isômero nuclear metaestável de bário: bário-137m. O pico principal de fótons de Ba-137m é 662 keV . Para esse cálculo, suponha que todos os decaimentos passem por esse canal.

Calcule a taxa de dose primária do fóton , em sieverts por hora (Sv.h -1 ), na superfície externa de uma blindagem de chumbo com 5 cm de espessura. Em seguida, calcule as doses equivalentes e efetivas para dois casos.

  1. Suponha que esse campo de radiação externa penetre uniformemente por todo o corpo. Isso significa: Calcule a taxa efetiva de dose para todo o corpo .
  2. Suponha que esse campo de radiação externa penetre apenas os pulmões e os outros órgãos estejam completamente protegidos. Isso significa: Calcule a taxa de dose efetiva .

Observe que a taxa de dose primária de fótons negligencia todas as partículas secundárias. Suponha que a distância efetiva da fonte do ponto de dose seja 10 cm . Também devemos assumir que o ponto de dose é um tecido mole, que pode ser razoavelmente simulado pela água e usamos o coeficiente de absorção de energia em massa da água.

Veja também: Atenuação de raios gama

Veja também: Blindagem de raios gama

 

Solução:

A taxa de dose primária de fótons é atenuada exponencialmente , e a taxa de dose de fótons primários, levando em consideração o escudo, é dada por:

cálculo da taxa de dose

Como pode ser visto, não consideramos o acúmulo de radiação secundária. Se partículas secundárias forem produzidas ou se a radiação primária mudar sua energia ou direção, a atenuação efetiva será muito menor. Essa suposição geralmente subestima a taxa de dose verdadeira, especialmente para blindagens espessas e quando o ponto de dose está próximo à superfície da blindagem, mas essa suposição simplifica todos os cálculos. Nesse caso, a taxa real de dose (com o acúmulo de radiação secundária) será mais de duas vezes maior.

Para calcular a taxa de dose absorvida , precisamos usar a fórmula:

  • k = 5,76 x 10 -7
  • S = 3,7 x 10 10 s -1
  • E = 0,662 MeV
  • μ t / ρ =  0,0326 cm 2 / g (os valores estão disponíveis no NIST)
  • μ = 1,289 cm -1 (os valores estão disponíveis no NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

A taxa de dose absorvida resultante em cinza por hora é então:

taxa de dose absorvida - cinza - cálculo

1) irradiação uniforme

Como o fator de ponderação da radiação para os raios gama é igual a um e assumimos o campo de radiação uniforme (o fator de ponderação do tecido também é igual à unidade), podemos calcular diretamente a taxa de dose equivalente e a taxa de dose efetiva (E = H T ) a partir da taxa de dose absorvida, como:

cálculo - dose efetiva - uniforme

2) irradiação parcial

Neste caso, assumimos uma irradiação parcial apenas dos pulmões. Assim, temos que utilizar o factor de ponderação de tecido , o que é igual a T = 0,12 . O fator de ponderação da radiação para raios gama é igual a um. Como resultado, podemos calcular a taxa de dose efetiva como:

cálculo - dose efetiva - não uniforme

Observe que, se uma parte do corpo (por exemplo, os pulmões) recebe uma dose de radiação, isso representa um risco para um efeito particularmente prejudicial (por exemplo, câncer de pulmão). Se a mesma dose é administrada a outro órgão, isso representa um fator de risco diferente.

Se queremos dar conta do acúmulo de radiação secundária, precisamos incluir o fator de acúmulo. A fórmula estendida para a taxa de dose é então:

taxa de dose absorvida - cinza

 

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é contador de cintilação – Detector de cintilação – Definição

Um contador de cintilação ou detector de cintilação é um detector de radiação que utiliza o efeito conhecido como cintilação. A cintilação é um flash de luz produzido em um material transparente pela passagem de uma partícula. Dosimetria de Radiação
Scintillation_Counter - Tubo Fotomultiplicador
Aparelho com cristal cintilante, fotomultiplicador e componentes de aquisição de dados. Fonte: wikipedia.org Licença CC BY-SA 3.0

Um contador de cintilação ou detector de cintilação é um detector de radiação que usa o efeito conhecido como cintilação . A cintilação é um flash de luz produzido em um material transparente pela passagem de uma partícula (um elétron, uma partícula alfa, um íon ou um fóton de alta energia). A cintilação ocorre no cintilador, que é uma parte essencial de um detector de cintilação. Em geral, um detector de cintilação consiste em:

  • Cintilador . Um cintilador gera fótons em resposta à radiação incidente.
  • Fotodetector . Um fotodetector sensível (geralmente um tubo fotomultiplicador (PMT), uma câmera de dispositivo acoplado a carga (CCD) ou um fotodiodo), que converte a luz em um sinal elétrico e eletrônico para processar esse sinal.

O princípio básico de operação envolve a reação da radiação com um cintilador, que produz uma série de flashes de intensidade variável. A intensidade dos flashes é proporcional à energia da radiação. Esse recurso é muito importante. Esses contadores são adequados para medir a energia da radiação gama ( espectroscopia gama ) e, portanto, podem ser usados ​​para identificar isótopos emissores gama.

Os contadores de cintilação são amplamente utilizados em proteção contra radiação , ensaio de materiais radioativos e pesquisa em física porque podem ser feitos de maneira barata e com boa eficiência e podem medir a intensidade e a energia da radiação incidente. Hospitais em todo o mundo possuem câmeras gama baseadas no efeito de cintilação e, portanto, também são chamadas de câmeras de cintilação.

As vantagens de um contador de cintilação são sua eficiência e as altas taxas de precisão e contagem possíveis. Esses últimos atributos são uma conseqüência da duração extremamente curta dos flashes de luz, de cerca de 10 a 9  (cintiladores orgânicos) a 10 a 6 (cintiladores inorgânicos) segundos. A intensidade dos flashes e a amplitude do pulso da tensão de saída são proporcionais à energia da radiação . Portanto, os contadores de cintilação podem ser usados ​​para determinar a energia, bem como o número, das partículas excitantes (ou fótons gama). Para espectrometria gama, os detectores mais comuns incluem contadores de cintilação de iodeto de sódio (NaI) e detectores de germânio de alta pureza.

Contador de Cintilações – Princípio de Operação

A operação dos contadores de cintilação é resumida nos seguintes pontos:

  • Contador de Cintilações - Princípio de Operação
    Contador de Cintilação – Princípio de Operação. Fonte: wikipedia.org Licença: Public Domain

    A radiação ionizante entra no cintilador e interage com o material do cintilador. Isso faz com que os elétrons sejam elevados a um estado excitado .

  • Os átomos excitados do material cintilador de-excite e rapidamente emitir um fotão na visível (ou próximo do visível) gama de luz. A quantidade é proporcional à energia depositada pela partícula ionizante. Diz-se que o material fluorescente.
  • Três classes de fósforo são usadas:
    • cristais inorgânicos,
    • cristais orgânicos,
    • fósforos de plástico.
  • A luz criada no cintilador atinge o fotocatodo de um tubo fotomultiplicador , liberando no máximo um fotoelétron por fóton.
  • Usando um potencial de voltagem, esse grupo de elétrons primários é eletrostaticamente acelerado e focado para atingir o primeiro dínodo com energia suficiente para liberar elétrons adicionais.
  • Esses elétrons secundários são atraídos e atingem um segundo dínodo liberando mais elétrons. Esse processo ocorre no tubo fotomultiplicador.
  • Cada impacto subsequente do dínodo libera mais elétrons e, portanto, há um efeito de amplificação de corrente em cada estágio do dínodo. Cada estágio tem um potencial maior que o anterior para fornecer o campo de aceleração.
  • O sinal primário é multiplicado e essa amplificação continua por 10 a 12 estágios.
  • No dínodo final , elétrons suficientes estão disponíveis para produzir um pulso de magnitude suficiente para amplificação adicional. Esse pulso carrega informações sobre a energia da radiação incidente original. O número desses pulsos por unidade de tempo também fornece informações sobre a intensidade da radiação.

Um detector de cintilação ou contador de cintilação é obtido quando um cintilador é acoplado a um sensor de luz eletrônico, como:

  • um tubo fotomultiplicador (PMT),
  • uma câmera de dispositivo acoplado a carga (CCD),
  • foto-diodo

Todos esses dispositivos podem ser usados ​​em contadores de cintilação e todos convertem a luz em um sinal elétrico e contêm componentes eletrônicos para processar esse sinal. Um tubo fotomultiplicador (PMT) absorve a luz emitida pelo cintilador e a reemite na forma de elétrons pelo efeito fotoelétrico. O PMT tem sido a principal escolha para detecção de fótons desde então, porque eles têm alta eficiência quântica e alta amplificação. Ultimamente, no entanto, os semicondutores começaram a competir com o PMT, o fotodiodo, por exemplo, que possui maior eficiência quântica na faixa visível e acima, menor consumo de energia e menor tamanho.

Os fotodiodos a vácuo são semelhantes, mas não amplificam o sinal, enquanto os fotodiodos de silício, por outro lado, detectam os fótons recebidos pela excitação de portadores de carga diretamente no silício.

Várias câmeras gama portáteis para geração de imagens médicas usam detectores baseados em cintiladores e CCD . Nesse caso, um cintilador converte a radiação incidente (geralmente raios X) em fótons visíveis, que podem ser detectados diretamente pela câmera CCD.

Observe que o termo eficiência quântica (QE) pode ser aplicado à razão de fóton incidente a elétron convertido (IPCE) de um dispositivo fotossensível. A eficiência quântica para o fotodiodo é alta (60-80%) em comparação com o PMT (20-30%), o que fornece uma resolução de energia mais alta.

Materiais de Cintilação – Cintiladores

Cintiladores são tipos de materiais que fornecem fótons detectáveis ​​na parte visível do espectro da luz, após a passagem de uma partícula carregada ou de um fóton. O cintilador consiste em um cristal transparente , geralmente um fósforo, plástico ou líquido orgânico que fluorescente quando atingido por radiação ionizante. O cintilador também deve ser transparente às suas próprias emissões de luz e deve ter um curto período de decaimento. O cintilador também deve ser protegido contra toda a luz ambiente, para que os fótons externos não inundem os eventos de ionização causados ​​pela radiação incidente. Para conseguir isso, uma película fina e opaca, como o mylar aluminizado, é frequentemente usada, embora deva ter uma massa suficientemente baixa para minimizar a atenuação indevida da radiação incidente sendo medida.

Existem basicamente dois tipos de cintiladores em uso comum na física nuclear e de partículas: cintiladores orgânicos ou plásticos e cintiladores inorgânicos ou cristalinos.

Cintiladores Inorgânicos

Cristal de cintilação CsI (Tl)
Cristal de cintilação CsI (Tl). Fonte: wikipedia.de Licença: CC BY-SA 3.0

Cintiladores inorgânicos são geralmente cristais cultivados em fornos de alta temperatura. Eles incluem iodeto de lítio (LiI), iodeto de sódio (NaI) , iodeto de césio (CsI) e sulfeto de zinco (ZnS). O material de cintilação mais utilizado é o NaI (Tl) (iodeto de sódio dopado com tálio). O iodo fornece a maior parte do poder de parada no iodeto de sódio (uma vez que possui um alto Z = 53). Esses cintiladores cristalinos são caracterizados por tempos de alta densidade, alto número atômico e decaimento de pulso de aproximadamente 1 microssegundo ( ~ 10 a 6 segundos) A cintilação em cristais inorgânicos é tipicamente mais lenta que nos orgânicos. Eles exibem alta eficiência na detecção de raios gama e são capazes de lidar com altas taxas de contagem. Os cristais inorgânicos podem ser cortados em tamanhos pequenos e dispostos em uma configuração de matriz para fornecer sensibilidade à posição. Esse recurso é amplamente utilizado em imagens médicas para detectar raios-X ou raios gama . Os cintiladores inorgânicos são melhores na detecção de raios gama e raios X do que os cintiladores orgânicos. Isto é devido à sua alta densidade e número atômico, o que fornece uma alta densidade de elétrons. Uma desvantagem de alguns cristais inorgânicos, por exemplo, NaI, é a higroscopicidade, uma propriedade que exige que sejam alojados em um recipiente hermético para protegê-los da umidade.

Cintiladores orgânicos

Cintiladores orgânicos são tipos de materiais orgânicos que fornecem fótons detectáveis ​​na parte visível do espectro da luz, após a passagem de uma partícula carregada ou de um fóton. O mecanismo de cintilação em materiais orgânicos é bastante diferente do mecanismo em cristais inorgânicos. Em cintiladores inorgânicos, por exemplo NaI, CsI, a cintilação surge devido à estrutura da rede cristalina. O mecanismo de fluorescência em materiais orgânicos decorre de transições nos níveis de energia de uma única molécula e, portanto, a fluorescência pode ser observada independentemente do estado físico (vapor, líquido, sólido).

Em geral, os cintiladores orgânicos têm tempos de decaimento rápidos (normalmente de 10 a 8 segundos ), enquanto os cristais inorgânicos são geralmente muito mais lentos (cerca de 10 a 6 segundos), embora alguns também tenham componentes rápidos em sua resposta. Existem três tipos de cintiladores orgânicos:

  • Cristais orgânicos puros . Cristais orgânicos puros incluem cristais de antraceno, estilbeno e naftaleno. O tempo de decaimento desse tipo de fósforo é de aproximadamente 10 nanossegundos. Este tipo de cristal é freqüentemente usado na detecção de partículas beta . Eles são muito duráveis, mas sua resposta é anisotrópica (que prejudica a resolução de energia quando a fonte não é colimada) e não pode ser usinada com facilidade, nem pode ser cultivada em tamanhos grandes. Portanto, eles não são usados ​​com muita frequência.
  • Soluções orgânicas líquidas . Soluções orgânicas líquidas são produzidas dissolvendo um cintilador orgânico em um solvente.
  • Cintiladores de plástico . Os fósforos plásticos são produzidos adicionando produtos químicos de cintilação a uma matriz plástica. A constante de decaimento é o menor dos três tipos de fósforo, chegando a 1 ou 2 nanossegundos. Os cintiladores de plástico são, portanto, mais apropriados para uso em ambientes de alto fluxo e em medições de alta taxa de dose. O plástico tem um alto teor de hidrogênio, portanto, é útil para detectores rápidos de nêutrons . É necessário substancialmente mais energia para produzir um fóton detectável em um cintilador do que um par de elétrons-íons por ionização (normalmente por um fator de 10), e como os cintiladores inorgânicos produzem mais luz que os cintiladores orgânicos, eles são consequentemente melhores para aplicações com baixas energias .

Tubo fotomultiplicador

Os tubos fotomultiplicadores (PMTs) são um dispositivo de detecção de fótons que usa o efeito fotoelétrico combinado com a emissão secundária para converter luz em um sinal elétrico. Um fotomultiplicador absorve a luz emitida pelo cintilador e a reemite na forma de elétrons pelo efeito fotoelétrico . O PMT tem sido a principal escolha para detecção de fótons desde então, porque eles têm alta eficiência quântica e alta amplificação.

Componentes do tubo fotomultiplicador

O dispositivo consiste em vários componentes e esses componentes são mostrados na figura.

  • Scintillation_Counter - Tubo Fotomultiplicador
    Aparelho com cristal cintilante, fotomultiplicador e componentes de aquisição de dados. Fonte: wikipedia.org Licença CC BY-SA 3.0

    Photocathode . Logo após uma fina janela de entrada, existe um fotocátodo, feito de material no qual os elétrons de valência estão fracamente ligados e têm uma seção transversal alta para converter fótons em elétrons pelo efeito fotoelétrico. Por exemplo, Cs 3 Sb (césio-antimônio) pode ser usado. Como resultado, a luz criada no cintilador atinge o fotocatodo de um tubo fotomultiplicador, liberando no máximo um fotoelétron por fóton.

  • Dínodos . Usando um potencial de voltagem, esse grupo de elétrons primários é eletrostaticamente acelerado e focado para atingir o primeiro dínodo com energia suficiente para liberar elétrons adicionais. Há uma série (“estágios”) de dínodos feitos de material com função de trabalho relativamente baixa. Esses eletrodos são operados com potencial cada vez maior (por exemplo, ~ 100-200 V entre dínodos). No dínodo, os elétrons são multiplicados por emissão secundária. O próximo dínodo tem uma voltagem mais alta, o que faz com que os elétrons liberados do primeiro acelerem em sua direção. Em cada dínodo 3-4 electrões são introduzidas em cada electrões incidente, e com 6 a 14 dínodos o ganho total, ou do factor de amplificação de electrões, será na gama de ~ 10 4 -107 quando atingem o ânodo. As tensões operacionais típicas estão na faixa de 500 a 3000 V. No dínodo final, elétrons suficientes estão disponíveis para produzir um pulso de magnitude suficiente para amplificação adicional. Esse pulso carrega informações sobre a energia da radiação incidente original. O número desses pulsos por unidade de tempo também fornece informações sobre a intensidade da radiação.

Eficiência quântica

A sensibilidade de um fotocátodo é geralmente citada em termos de eficiência quântica . Em geral, o termo eficiência quântica (QE) pode ser aplicado à razão de fóton incidente para elétron convertido ( IPCE ) de um dispositivo fotossensível. A eficiência quântica do fotocatodo é definida como a probabilidade de conversão de fótons incidentes em um sinal elétrico e é definida como:

Eficiência Quântica - Tubo Fotomultiplicador

A eficiência quântica de qualquer dispositivo fotossensível é uma forte função do comprimento de onda da luz incidente e é feito um esforço para corresponder a resposta espectral do fotocatodo ao espectro de emissão do cintilador em uso. No tubo fotomultiplicador, a eficiência quântica é limitada a 20 a 30% , mas a eficiência quântica média no espectro de emissão de um cintilador típico é de cerca de 15 a 20% .

O padrão para cotação é o número de fotoelétrons por perda de energia de keV por elétrons rápidos em um cintilador NaI (Tl) . Para o pico de eficiência quântica, são produzidos cerca de 8 a 10 fotoelétrons por cada perda de energia de keV. Portanto, a perda média de energia necessária para criar um único fotoelétron é de ~ 100 eV, que é muito maior que os valores em detectores cheios a gás ou semicondutores.

O PMT tem sido a principal escolha para detecção de fótons desde então, porque eles têm alta eficiência quântica e alta amplificação. Ultimamente, no entanto, os semicondutores começaram a competir com o PMT, o fotodiodo, por exemplo, que tem maior eficiência quântica na faixa visível e acima, menor consumo de energia e menor tamanho. A eficiência quântica para o fotodiodo é alta (60-80%) em comparação com o PMT (20-30%), o que fornece uma resolução de energia mais alta.

Fotodiodos – Contador de Cintilações

Um detector de cintilação ou contador de cintilação é obtido quando um cintilador é acoplado a um sensor de luz eletrônico, como:

  • um tubo fotomultiplicador (PMT),
  • uma câmera de dispositivo acoplado a carga (CCD),
  • foto-diodo

Todos esses dispositivos podem ser usados ​​em contadores de cintilação e todos convertem a luz em um sinal elétrico e contêm componentes eletrônicos para processar esse sinal. Um fotodiodo é um dispositivo semicondutor que converte luz em corrente elétrica. Este é um dispositivo semicondutor que consiste em uma fina camada de silício, na qual a luz é absorvida, após a qual são criados portadores de carga livre (elétrons e orifícios). Um fotodiodo convencional geralmente se refere a um diodo PIN. PIN significa que os lados d e n dopados são separados por uma região i empobrecida. Elétrons e orifícios são coletados no ânodo e no cátodo do diodo. Isso resulta em uma fotocorrente que é a saída do diodo. A carga, no entanto, não é amplificada, diminuindo a amplitude do sinal de saída. Isso torna o fotodiodo sensível ao ruído eletrônico. Por outro lado,

Detecção de radiação alfa, beta e gama usando contador de cintilação

Os contadores de cintilação são usados ​​para medir a radiação em uma variedade de aplicações, incluindo medidores portáteis de pesquisa de radiação, monitoramento pessoal e ambiental de contaminação radioativa , imagens médicas, ensaios radiométricos, segurança nuclear e segurança de usinas nucleares. Eles são amplamente utilizados porque podem ser fabricados de maneira barata e com boa eficiência e podem medir a intensidade e a energia da radiação incidente.

Os contadores de cintilação podem ser usados ​​para detectar radiação alfa , beta e gama . Eles podem ser usados ​​também para a detecção de nêutrons . Para esses fins, diferentes cintiladores são usados:

  • Partículas Alfa e Íons Pesados . Devido ao alto poder ionizante dos íons pesados, os contadores de cintilação geralmente não são ideais para a detecção de íons pesados. Para energias iguais, um próton produzirá de 1/4 a 1/2 da luz de um elétron, enquanto as partículas alfa produzirão apenas cerca de 1/10 da luz. Onde necessário, cristais inorgânicos, por exemplo, CsI (Tl), ZnS (Ag) (normalmente usados ​​em chapas finas como monitores de partículas α), devem ser preferidos aos materiais orgânicos. O CsI puro é um material cintilante rápido e denso com rendimento de luz relativamente baixo que aumenta significativamente com o resfriamento. As desvantagens de CsI são um gradiente de alta temperatura e uma ligeira higroscopicidade.
  • Partículas beta . Para a detecção de partículas beta, cintiladores orgânicos podem ser usados. Cristais orgânicos puros incluem cristais de antraceno, estilbeno e naftaleno. O tempo de decaimento desse tipo de fósforo é de aproximadamente 10 nanossegundos. Este tipo de cristal é freqüentemente usado na detecção de partículas beta. Os cintiladores orgânicos , com um Z menor que os cristais inorgânicos, são mais adequados para a detecção de partículas beta de baixa energia (<10 MeV).
  • Raios gama . Os materiais com alto teor de Z são mais adequados como cintiladores para a detecção de raios gama. O material de cintilação mais utilizado é o NaI (Tl) (iodeto de sódio dopado com tálio). O iodo fornece a maior parte do poder de parada no iodeto de sódio (uma vez que possui um alto Z = 53). Esses cintiladores cristalinos são caracterizados por tempos de alta densidade, alto número atômico e decaimento de pulso de aproximadamente 1 microssegundo (~ 10 -6sec). A cintilação em cristais inorgânicos é tipicamente mais lenta que nos orgânicos. Eles exibem alta eficiência na detecção de raios gama e são capazes de lidar com altas taxas de contagem. Os cristais inorgânicos podem ser cortados em tamanhos pequenos e dispostos em uma configuração de matriz para fornecer sensibilidade à posição. Esse recurso é amplamente utilizado em imagens médicas para detectar raios-X ou raios gama. Cintiladores inorgânicos são melhores na detecção de raios gama e raios-X. Isto é devido à sua alta densidade e número atômico, o que fornece uma alta densidade de elétrons.
  • Nêutrons . Como os nêutrons são partículas eletricamente neutras, elas estão sujeitas principalmente a fortes forças nucleares, mas não a forças elétricas. Portanto, os nêutrons não são diretamente ionizantes e geralmente precisam ser convertidos em partículas carregadas antes que possam ser detectados. Geralmente, todo tipo de detector de nêutrons deve estar equipado com conversor (para converter a radiação de nêutrons em radiação detectável comum) e um dos detectores de radiação convencionais (detector de cintilação, detector de gases, detector de semicondutores, etc.).  Os nêutrons rápidos (> 0,5 MeV) dependem principalmente do próton de recuo nas reações (n, p). Materiais ricos em hidrogênio, por exemplo, cintiladores plásticos, portanto, são mais adequados para sua detecção. Os nêutrons térmicos dependem de reações nucleares, como as reações (n, γ) ou (n, α), para produzir ionização. Materiais como LiI (Eu) ou silicatos de vidro são, portanto, particularmente adequados para a detecção de nêutrons térmicos.

Espectroscopia gama usando contador de cintilação

Veja também: Espectroscopia gama usando contador de cintilação

Veja também: Espectroscopia gama

Em geral, a espectroscopia gama é o estudo dos espectros de energia de fontes de raios gama, como na indústria nuclear, investigação geoquímica e astrofísica. Espectroscópios, ou espectrômetros, são dispositivos sofisticados projetados para medir a distribuição espectral de potência de uma fonte. A radiação incidente gera um sinal que permite determinar a energia da partícula incidente.

Espectro do detector HPGe
Figura: Legenda: Comparação dos espectros de NaI (Tl) e HPGe para o cobalto-60. Fonte: Radioisótopos e metodologia de radiação I, II. Soo Hyun Byun, notas de aula. Universidade McMaster, Canadá.

A maioria das fontes radioativas produz raios gama , que são de várias energias e intensidades. Os raios gama frequentemente  acompanham a emissão  de  radiação alfa  e  beta . Quando essas emissões são detectadas e analisadas com um sistema de espectroscopia, um espectro de energia de raios gama pode ser produzido. Raios gama de decaimento radioativoestão na faixa de energia de alguns keV a ~ 8 MeV, correspondendo aos níveis típicos de energia nos núcleos com vida útil razoavelmente longa. Como foi escrito, eles são produzidos pela decomposição dos núcleos à medida que passam de um estado de alta energia para um estado inferior. Uma análise detalhada desse espectro é normalmente usada para determinar a identidade e a quantidade de emissores gama presentes em uma amostra e é uma ferramenta vital no ensaio radiométrico. O espectro gama é característico dos nuclídeos emissores de gama contidos na fonte.

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.

O que é o tubo Geiger-Müller – Câmara Geiger – Definição

Um tubo Geiger-Müller é uma parte essencial do contador Geiger. O tubo Geiger-Müller é o elemento sensor que detecta radiação. Existem dois tipos principais de construção de tubos Geiger. Dosimetria de Radiação
Detector de radiação ionizante - Tubo Geiger
Detector de radiação ionizante – Tubo Geiger

Um contador Geiger consiste em um tubo Geiger-Müller (o elemento sensor que detecta a radiação) e a eletrônica de processamento, que exibe o resultado.

O contador Geiger pode detectar radiação ionizante, como partículas alfa  e  beta ,  nêutrons e  raios gama,  usando o efeito de ionização produzido em um tubo Geiger-Müller, que dá nome ao instrumento. A tensão do detector é ajustada para que as condições correspondam à região de Geiger-Mueller .

Visualização da propagação de avalanches de Townsend por meio de fótons UV. Fonte: wikpedia.org Licença: CC BY-SA 3.0

Nesta região, a voltagem é alta o suficiente para fornecer aos elétrons primários aceleração e energia suficientes para que eles possam ionizar átomos adicionais do meio. Esses íons secundários (amplificação de gás) formados também são acelerados, causando um efeito conhecido como avalanches de Townsend . Essas avalanches podem ser desencadeadas e propagadas por fótons emitidos por átomos excitados na avalanche original. Como esses fótons não são afetados pelo campo elétrico, eles podem interagir longe (por exemplo, lateralmente ao eixo) da avalanche primária, todo o tubo Geiger está participando do processo.

Um sinal forte (o fator de amplificação pode atingir cerca de 10 10 ) é produzido por essas avalanches com forma e altura, independentemente da ionização primária e da energia do fóton detectado. O pulso de tensão neste caso seria um grande e facilmente detectável ± 1,6 V. A vantagem técnica de um contador Geiger é sua simplicidade de construção e sua insensibilidade a pequenas flutuações de tensão. É muito útil para medição geral de radiação nuclear, mas tem duas desvantagens importantes.

  • Detectores de ionização gasosa - Regiões
    Este diagrama mostra o número de pares de íons gerados no detector a gás, que varia de acordo com a tensão aplicada à radiação incidente constante. As tensões podem variar amplamente, dependendo da geometria do detector e do tipo e pressão do gás. Esta figura indica esquematicamente as diferentes regiões de tensão dos raios alfa, beta e gama. Existem seis principais regiões operacionais práticas, onde três (ionização, proporcional e região de Geiger-Mueller) são úteis para detectar radiação ionizante. As partículas alfa são mais ionizantes que as partículas beta e os raios gama; portanto, mais corrente é produzida na região da câmara de íons por alfa do que beta e gama, mas as partículas não podem ser diferenciadas. Mais corrente é produzida na região de contagem proporcional por partículas alfa que beta, mas, pela natureza da contagem proporcional, é possível diferenciar os pulsos alfa, beta e gama. Na região de Geiger, não há diferenciação de alfa e beta, pois qualquer evento de ionização isolado no gás resulta na mesma saída de corrente.

    Como a altura do pulso é independente do tipo e energia da radiação, a discriminação não é possível. Não há informações sobre a natureza da ionização que causou o pulso.

  • Devido à grande avalanche induzida por qualquer ionização, um contador Geiger leva muito tempo (cerca de 1 ms) para se recuperar entre pulsos sucessivos. Portanto, os contadores Geiger não conseguem medir altas taxas de radiação devido ao ” tempo morto ” do tubo.

Há uma diferença sutil, mas importante, entre as câmaras de ionização e os contadores Geiger . Uma câmara de ionização produzirá uma corrente proporcional ao número de elétrons coletados a cada segundo (não ocorre amplificação). Essa corrente é calculada pela média e é usada para conduzir uma leitura de exibição em Bq ou μSv / h. Os contadores proporcionais e Geiger não funcionam dessa maneira. Em vez disso, eles amplificam cada uma das explosões individuais de ionização para que cada evento ionizante seja detectado separadamente. Eles, portanto, medem o número de eventos ionizantes (é por isso que são chamados contadores). Enquanto as câmaras de ionização podem ser operadas no modo atual ou de pulso, os contadores proporcionais ou Geiger são quase sempre usados ​​emmodo de pulso . Ao contrário dos contadores proporcionais, os contadores GM são usados ​​principalmente para instrumentação portátil devido à sua sensibilidade, circuito simples de contagem e capacidade de detectar radiação de baixo nível.

Região de Geiger-Mueller

Visualização da propagação de avalanches de Townsend por meio de fótons UV. Fonte: wikpedia.org Licença: CC BY-SA 3.0

Na região de Geiger-Mueller , a tensão e, portanto, o campo elétrico são tão fortes que podem ocorrer avalanches secundárias. Essas avalanches podem ser desencadeadas e propagadas por fótons emitidos por átomos excitados na avalanche original. Como esses fótons não são afetados pelo campo elétrico, eles podem interagir longe (por exemplo, lateralmente ao eixo) da avalanche primária, todo o tubo Geiger está participando do processo. Um sinal forte (o fator de amplificação pode atingir cerca de 10 10) é produzido por essas avalanches com forma e altura, independentemente da ionização primária e da energia do fóton detectado. Os detectores, que são operados na região de Geiger-Mueller, são capazes de detectar raios gama e também de todos os tipos de partículas carregadas que podem entrar no detector. Esses detectores são conhecidos como  contadores Geiger . A principal vantagem desses instrumentos é que eles geralmente não requerem nenhum amplificador de sinal. Como os íons positivos não se afastam da região da avalanche, uma nuvem de íons carregada positivamente perturba o campo elétrico e encerra o processo da avalanche. Na prática, o término da avalanche é melhorado pelo uso de “ extinção”Técnicas. Ao contrário dos contadores proporcionais, a energia ou mesmo as partículas de radiação incidente não podem ser distinguidas pelos contadores Geiger, pois o sinal de saída é independente da quantidade e do tipo de ionização original.

Princípio básico dos contadores Geiger

Detector de radiação ionizante - esquema básico
Os detectores de radiação ionizante consistem em duas partes que geralmente estão conectadas. A primeira parte consiste em um material sensível, constituído por um composto que sofre alterações quando exposto à radiação. O outro componente é um dispositivo que converte essas alterações em sinais mensuráveis.

O contador Geiger possui um cátodo e um ânodo que são mantidos em alta tensão, e o dispositivo é caracterizado por uma capacitância determinada pela geometria dos eletrodos. Em um contador Geiger, o gás de preenchimento da câmara é um gás inerte que é ionizado pela radiação incidente e um gás de resfriamento de 5 a 10% de um vapor orgânico ou um gás halogênio para evitar pulsações espúrias, extinguindo as avalanches de elétrons.

À medida que a radiação ionizante entra no gás entre os eletrodos, um número finito de pares de íons é formado. No ar, a energia média necessária para produzir um íon é de cerca de 34 eV; portanto, uma radiação de 1 MeV completamente absorvida no detector produz cerca de 3 x 10 4par de íons. O comportamento dos pares de íons resultantes é afetado pelo gradiente de potencial do campo elétrico dentro do gás e pelo tipo e pressão do gás de enchimento. Sob a influência do campo elétrico, os íons positivos se moverão em direção ao eletrodo carregado negativamente (cilindro externo) e os íons negativos (elétrons) migrarão em direção ao eletrodo positivo (fio central). O campo elétrico nessa região impede que os íons se recombinem com os elétrons. Nas imediações do fio do ânodo, a força do campo se torna grande o suficiente para produzir avalanches de Townsend. Essas avalanches podem ser desencadeadas e propagadas por fótons emitidos por átomos excitados na avalanche original. Como esses fótons não são afetados pelo campo elétrico, eles podem interagir longe (por exemplo, lateralmente ao eixo) da avalanche primária, todo o tubo Geiger está participando do processo. Um sinal forte (o fator de amplificação pode atingir cerca de 10 10 ) é produzido por essas avalanches com forma e altura, independentemente da ionização primária e da energia do fóton detectado. O alto fator de amplificação do contador Geiger é a principal vantagem sobre a câmara de ionização. O contador Geiger é, portanto, um dispositivo muito mais sensível do que outras câmaras. É frequentemente usado na detecção de raios gama de baixo nível e partículas beta por esse motivo.

Como os íons positivos não se afastam da região da avalanche, uma nuvem de íons carregada positivamente perturba o campo elétrico e encerra o processo da avalanche. Na prática, o término da avalanche é melhorado pelo uso de técnicas de “extinção” .

A coleta de todos esses elétrons produzirá uma carga nos eletrodos e um pulso elétrico no circuito de detecção. Cada pulso corresponde a uma interação de raios gama ou nêutrons. A altura do pulso não é proporcional ao número de elétrons originais produzidos. Portanto, os contadores Geiger não são capazes de identificar partículas e medir energia (espectroscopia). Como o processo de amplificação de carga melhora muito a relação sinal / ruído do detector, a amplificação eletrônica subsequente geralmente não é necessária.

Têmpera – tempo morto – contadores Geiger

Dead Time - Detector - Paralisável - Não paralisávelEm um contador Geiger, o gás de preenchimento da câmara é um gás inerte que é ionizado pela radiação incidente e um gás de resfriamento de 5 a 10% de um vapor orgânico ou de um gás halogênio para evitar pulsações espúrias, extinguindo as avalanches de elétrons. O contador Geiger não deve fornecer pulsos espúrios e deve se recuperar rapidamente para o estado passivo, pronto para o próximo evento de radiação. Argônio e hélio são os gases de enchimento mais frequentemente utilizados e permitem a detecção de radiação alfa, beta e gama. Para a detecção de nêutrons, He-3 e BF 3 (trifluoreto de boro) são os gases mais empregados.

No entanto, para cada elétron coletado na câmara, resta um íon de gás com carga positiva. Esses íons gasosos são pesados ​​em comparação com um elétron e se movem muito mais lentamente. Os elétrons livres são muito mais leves que os íons positivos; portanto, eles são atraídos para o eletrodo central positivo muito mais rapidamente do que os íons positivos são atraídos para a parede da câmara. A nuvem resultante de íons positivos próximos ao eletrodo leva a distorções na multiplicação de gases. Eventualmente, os íons positivos se afastam do fio central com carga positiva para a parede com carga negativa e são neutralizados com o ganho de um elétron. Esses átomos retornam ao seu estado fundamental emitindo fótons que, por sua vez, produzem mais ionização e, portanto, descargas secundárias espúrias. Os elétrons produzidos por essa ionização se movem em direção ao fio central e são multiplicados no caminho. Esse pulso de carga não está relacionado à radiação a ser detectada e pode disparar uma série de pulsos. Na prática, o término da avalanche é melhorado pelo uso de Técnicas de “extinção” .

As moléculas de gás de têmpera têm uma afinidade mais fraca pelos elétrons do que o gás da câmara; portanto, os átomos ionizados do gás da câmara retiram prontamente elétrons das moléculas de gás de extinção. Assim, as moléculas ionizadas do gás de têmpera atingem a parede da câmara em vez do gás da câmara. As moléculas ionizadas do gás de têmpera são neutralizadas pelo ganho de um elétron, e a energia liberada não causa mais ionização, mas causa a dissociação da molécula. Esse tipo de resfriamento é conhecido como  resfriamento automático  ou  interno , pois os tubos interrompem a descarga sem assistência externa.

Para os contadores Geiger, a têmpera externa, às vezes chamada de “ têmpera ativa ” ou “ têmpera eletrônica ”, também é uma possibilidade. A têmpera eletrônica usa eletrônica simplista de controle de alta velocidade para remover e reaplicar rapidamente a alta tensão entre os eletrodos por um tempo fixo após cada pico de descarga, a fim de aumentar a taxa máxima de contagem e a vida útil do tubo.

Referência Especial: Departamento de Energia, Instrumantação e Controle dos EUA. DOE Fundamentals Handbook, Volume 2, de 2 de junho de 1992.

Tipos de tubos Geiger-Mueller

Os contadores Geiger são usados ​​principalmente para instrumentação portátil devido à sua sensibilidade, circuito simples de contagem e capacidade de detectar radiação de baixo nível. Embora o uso principal dos contadores Geiger seja provavelmente na detecção individual de partículas, eles também são encontrados em medidores gama. Eles são capazes de detectar quase todos os tipos de radiação, mas há pequenas diferenças no tubo Geiger-Mueller. No entanto, o tubo Geiger-Müller produz uma saída de pulso que é da mesma magnitude para toda a radiação detectada; portanto, um contador Geiger com um tubo na janela final não consegue distinguir entre partículas alfa e beta.

Existem dois tipos principais de construção de tubos Geiger :

  • Tipo de janela final . Para que partículas alfa e beta sejam detectadas pelos contadores Geiger, elas devem ser fornecidas com uma janela fina . Essa ” janela final ” deve ser fina o suficiente para que as partículas alfa e beta penetrem. No entanto, uma janela de quase qualquer espessura impedirá que uma partícula alfa entre na câmara. A janela é geralmente feita de mica com uma densidade de cerca de 1,5 – 2,0 mg / cm 2para permitir que partículas beta de baixa energia (por exemplo, do carbono 14) entrem no detector. A redução de eficiência para alfa é devida ao efeito de atenuação da janela final, embora a distância da superfície verificada também tenha um efeito significativo, e idealmente uma fonte de radiação alfa deve estar a menos de 10 mm do detector devido à atenuação no ar.
  • Tipo sem janelas . Os raios gama têm muito pouco problema em penetrar nas paredes metálicas da câmara. Portanto, os contadores Geiger podem ser usados ​​para detectar radiação gama e raios-X (tubos de paredes finas) conhecidos coletivamente como fótons, e para isso o tubo sem janelas é usado.
    • Um tubo de parede espessa é usado para detecção de radiação gama acima de energias de cerca de 25 KeV, esse tipo geralmente tem uma espessura total de parede de cerca de 1-2 mm de aço cromado.
    • Um tubo de paredes finas é usado para fótons de baixa energia (raios X ou raios gama) e partículas beta de alta energia. A transição do projeto de paredes finas para paredes espessas ocorre nos níveis de energia de 300 a 400 keV. Acima desses níveis, são utilizados projetos de paredes espessas e, abaixo desses níveis, o efeito de ionização direta de gás é predominante.

Às vezes, um design de “panqueca” do tubo Geiger-Mueller é preferido. Este detector é um tubo Geiger plano com uma fina janela de mica de uma área maior. Tubos Geiger planos como esse são conhecidos como tubos de “panqueca”. Tais tubos são equipados com uma tela de arame para protegê-los. Esse projeto fornece maior área de detecção e, portanto, maior eficiência para tornar a verificação mais rápida. No entanto, a pressão da atmosfera contra a baixa pressão do gás de enchimento limita o tamanho da janela devido à resistência limitada da membrana da janela.

Detecção de nêutrons usando o contador Geiger

Como os nêutrons são partículas eletricamente neutras, elas estão sujeitas principalmente a fortes forças nucleares, mas não a forças elétricas. Portanto, os nêutrons não são diretamente ionizantes e geralmente precisam ser convertidos em partículas carregadas antes que possam ser detectados. Geralmente, todo tipo de detector de nêutrons deve estar equipado com conversor (para converter a radiação de nêutrons em radiação detectável comum) e um dos detectores de radiação convencionais (detector de cintilação, detector de gases, detector de semicondutores, etc.).

Não é comum, mas os contadores Geiger também podem ser usados ​​para a detecção de nêutrons. Nesse caso, o tubo Geiger-Mueller deve ter o interior do tubo revestido com boro ou o tubo deve conter trifluoreto de boro (BF 3 ) ou hélio-3 como gás de enchimento.

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.