Facebook Instagram Youtube Twitter

Qu’est-ce que l’avalanche de Townsend – Définition

L’avalanche de Townsend ou la décharge de Townsend pèsent considérablement sur le nombre de paires d’ions collectées dans les détecteurs à ionisation gazeuse. L’avalanche de Townsend est un processus d’ionisation gazeuse où les électrons libres sont accélérés par un champ électrique. Dosimétrie des rayonnements

La relation entre la tension appliquée et la hauteur d’impulsion dans un détecteur est très complexe. La hauteur d’impulsion et le nombre de paires d’ions collectées sont directement liés. L’avalanche de Townsend ou la décharge de Townsend pèsent considérablement sur le nombre de paires d’ions collectées dans les détecteurs à ionisation gazeuse. L’avalanche de Townsend est un processus d’ionisation des gaz où les électrons libres sont accélérés par un champ électrique, entrent en collision avec des molécules de gaz et, par conséquent, des électrons secondaires libres. Le résultat est une multiplication d’avalanche qui permet la conduction électrique à travers le gaz.

Avalanche de Townsend – Région proportionnelle

La génération d’avalanches discrètes de Townsend dans un compteur proportionnel. Source: wikpedia.org Licence: CC BY-SA 3.0

Dans la région proportionnelle, la charge collectée augmente avec une nouvelle augmentation de la tension du détecteur, tandis que le nombre de paires d’ions primaires reste inchangé. L’augmentation de la tension fournit aux électrons primaires une accélération et une énergie suffisantes pour qu’ils puissent ioniser des atomes supplémentaires du milieu. Ces ions secondaires formés sont également accélérés, provoquant un effet connu sous le nom d’ avalanches de Townsend , qui crée une seule impulsion électrique importante. Même s’il y a un grand nombre d’ions secondaires (environ 10 3 – 10 5 ) pour chaque événement primaire, la chambre fonctionne toujours de telle sorte que le nombre d’ions secondaires est proportionnelau nombre d’événements primaires. C’est très important, car l’ionisation primaire dépend du type et de l’énergie des particules ou des rayons dans le champ de rayonnement intercepté. Le nombre de paires d’ions collectées divisé par le nombre de paires d’ions produites par l’ionisation primaire fournit le facteur d’amplification du gaz (noté A). L’amplification des gaz qui se produit dans cette région peut augmenter la quantité totale d’ionisation à une valeur mesurable. Le processus d’amplification de charge améliore considérablement le rapport signal / bruit du détecteur et réduit l’amplification électronique ultérieure requise. Lorsque les instruments fonctionnent dans la région proportionnelle, la tension doit être maintenue constante.Si une tension reste constante, le facteur d’amplification du gaz ne change pas non plus. Les instruments de détection proportionnelle sont très sensibles aux faibles niveaux de rayonnement. De plus, les compteurs proportionnels sont capables d’identifier les particules et de mesurer l’énergie (spectroscopie). Différentes énergies de rayonnement et différents types de rayonnement peuvent être distingués en analysant la hauteur d’impulsion, car ils diffèrent considérablement dans l’ionisation primaire.

Avalanche de Townsend – Région de Geiger-Mueller

Visualisation de la propagation des avalanches de Townsend au moyen de photons UV. Source: wikpedia.org Licence: CC BY-SA 3.0

Dans cette région, la tension est suffisamment élevée pour fournir aux électrons primaires une accélération et une énergie suffisantes pour qu’ils puissent ioniser des atomes supplémentaires du milieu. Ces ions secondaires (amplification de gaz) formés sont également accélérés, provoquant un effet connu sous le nom d’avalanches de Townsend. Ces avalanches peuvent être déclenchées et propagées par des photons émis par des atomes excités dans l’avalanche d’origine. Étant donné que ces photons ne sont pas affectés par le champ électrique, ils peuvent interagir loin (par exemple latéralement à l’axe) de l’avalanche primaire, l’ensemble du tube Geiger participe au processus. Un signal fort ( le facteur d’amplification peut atteindre environ 10 10) est produite par ces avalanches de forme et de hauteur indépendamment de l’ionisation primaire et de l’énergie du photon détecté. L’impulsion de tension dans ce cas serait une ≈ 1,6 V. grande et facilement détectable

 

……………………………………………………………………………………………………………………………….

Cet article est basé sur la traduction automatique de l’article original en anglais. Pour plus d’informations, voir l’article en anglais. Pouvez vous nous aider Si vous souhaitez corriger la traduction, envoyez-la à l’adresse: [email protected] ou remplissez le formulaire de traduction en ligne. Nous apprécions votre aide, nous mettrons à jour la traduction le plus rapidement possible. Merci