La dosimétrie aux rayons X est très spécifique, car les photons de haute énergie interagissent différemment avec la matière. Les photons à haute énergie peuvent parcourir des milliers de pieds dans l’air et peuvent facilement traverser divers matériaux. De plus, les photons de haute énergie peuvent ioniser les atomes de manière indirecte et directe (bien qu’ils soient électriquement neutres) grâce à l’ effet photoélectrique et à l’ effet Compton . Mais l’ionisation secondaire (indirecte) est beaucoup plus importante.
Détecteurs de rayons X
Les détecteurs peuvent également être classés en fonction de matériaux et de méthodes sensibles qui peuvent être utilisés pour effectuer une mesure:
Détection des rayons X à l’aide d’une chambre d’ionisation
Les rayons gamma ont très peu de mal à pénétrer les parois métalliques de la chambre. Par conséquent, des chambres d’ionisation peuvent être utilisées pour détecter le rayonnement gamma et les rayons X collectivement appelés photons, et pour cela le tube sans fenêtre est utilisé. Les chambres d’ionisation ont une bonne réponse uniforme au rayonnement sur une large gamme d’énergies et sont le moyen préféré de mesurer des niveaux élevés de rayonnement gamma. Certains problèmes sont causés par le fait que les particules alpha sont plus ionisantes que les particules bêta et que les rayons gamma, donc plus de courant est produit dans la région de la chambre d’ionisation par alpha que bêta et gamma. Les rayons gamma déposent une quantité d’énergie considérablement plus faible dans le détecteur que les autres particules.
Détection des rayons X à l’aide du compteur Geiger
Le compteur Geiger peut détecter les rayonnements ionisants tels que les particules alpha et bêta , les neutrons , les rayons X et les rayons gamma en utilisant l’effet d’ionisation produit dans un tube Geiger – Müller, qui donne son nom à l’instrument. La tension du détecteur est ajustée pour que les conditions correspondent à la région Geiger-Mueller .
Le facteur d’amplification élevé du compteur Geiger est l’avantage majeur par rapport à la chambre d’ionisation. Le compteur Geiger est donc un appareil beaucoup plus sensible que les autres chambres. Il est souvent utilisé dans la détection des rayons gamma de bas niveau et des particules bêta pour cette raison.
Type sans fenêtre
Les rayons gamma ont très peu de mal à pénétrer les parois métalliques de la chambre. Par conséquent, les compteurs Geiger peuvent être utilisés pour détecter le rayonnement gamma et les rayons X (tubes à paroi mince) collectivement appelés photons, et pour cela, le tube sans fenêtre est utilisé.
- Un tube à paroi épaisse est utilisé pour la détection de rayonnement gamma au-dessus d’énergies d’environ 25 KeV, ce type a généralement une épaisseur de paroi globale d’environ 1 à 2 mm d’acier au chrome.
- Un tube à paroi mince est utilisé pour les photons de basse énergie (rayons X ou rayons gamma) et les particules bêta de haute énergie. La transition de la conception à parois minces aux parois épaisses se fait aux niveaux d’énergie de 300 à 400 keV. Au-dessus de ces niveaux, des conceptions à parois épaisses sont utilisées, et en dessous de ces niveaux, l’effet d’ionisation directe des gaz est prédominant.
Détection des rayons X à l’aide d’un compteur à scintillation
Les compteurs à scintillation sont utilisés pour mesurer le rayonnement dans une variété d’applications, y compris les compteurs portatifs de rayonnement, la surveillance du personnel et de l’environnement pour la contamination radioactive , l’imagerie médicale, les tests radiométriques, la sécurité nucléaire et la sécurité des centrales nucléaires. Ils sont largement utilisés car ils peuvent être fabriqués à peu de frais mais avec une bonne efficacité, et peuvent mesurer à la fois l’intensité et l’énergie du rayonnement incident.
Les compteurs à scintillation peuvent être utilisés pour détecter les rayons alpha , bêta , les rayons X et les rayons gamma . Ils peuvent également être utilisés pour la détection de neutrons . À ces fins, différents scintillateurs sont utilisés.
- X-Rays . Les matériaux à haute teneur en Z conviennent mieux comme scintillateurs pour la détection des rayons gamma. Le matériau de scintillation le plus utilisé est le NaI (Tl) (iodure de sodium dopé au thallium). L’iode fournit la plupart du pouvoir d’arrêt dans l’iodure de sodium (car il a un Z élevé = 53). Ces scintillateurs cristallins se caractérisent par une densité élevée, un nombre atomique élevé et des temps de décroissance d’impulsion d’environ 1 microseconde (~ 10 -6 seconde). La scintillation dans les cristaux inorganiques est généralement plus lente que dans les cristaux organiques. Ils présentent une grande efficacité pour la détection des rayons gamma et sont capables de gérer des taux de comptage élevés. Les cristaux inorganiques peuvent être coupés à de petites tailles et disposés dans une configuration en réseau afin de fournir une sensibilité de position. Cette fonction est largement utilisée en imagerie médicale pour détecter les rayons X ou les rayons gamma. Les scintillateurs inorganiques détectent mieux les rayons gamma et les rayons X. Cela est dû à leur densité élevée et à leur numéro atomique qui donne une densité électronique élevée.
Détection des rayons X à l’aide de semi-conducteurs – Détecteurs HPGe
Les détecteurs au germanium de haute pureté ( détecteurs HPGe ) sont la meilleure solution pour une spectroscopie gamma et aux rayons X précise .
Comme il a été écrit, l’étude et l’analyse des spectres de rayons gamma à des fins scientifiques et techniques sont appelées spectroscopie gamma, et les spectromètres à rayons gamma sont les instruments qui observent et collectent ces données. Un spectromètre à rayons gamma (GRS) est un appareil sophistiqué pour mesurer la distribution d’énergie du rayonnement gamma. Pour la mesure des rayons gamma au-dessus de plusieurs centaines de keV, il existe deux catégories de détecteurs d’importance majeure, les scintillateurs inorganiques comme le NaI (Tl) et les détecteurs semi – conducteurs . Si une résolution énergétique parfaite est requise, nous devons utiliser un détecteur à base de germanium , tel que le détecteur HPGe. Détecteurs semi – conducteurs à base de germanium sont les plus couramment utilisés où une très bonne résolution d’énergie est nécessaire, en particulier pour spectroscopie gamma , ainsi que la spectroscopie par rayons x . En spectroscopie gamma, le germanium est préféré car son numéro atomique est beaucoup plus élevé que le silicium et ce qui augmente la probabilité d’interaction des rayons gamma. De plus, le germanium a une énergie moyenne inférieure nécessaire pour créer une paire électron-trou, qui est de 3,6 eV pour le silicium et de 2,9 eV pour le germanium. Cela donne également à ce dernier une meilleure résolution en énergie. La FWHM (pleine largeur à moitié maximum) pour les détecteurs au germanium est fonction de l’énergie. Pour un photon de 1,3 MeV, la FWHM est de 2,1 keV, ce qui est très faible.
EPD – Dosimètre personnel électronique
Un dosimètre personnel électronique est un dosimètre moderne, qui peut donner une lecture continue de la dose cumulée et du débit de dose actuel , et peut avertir la personne qui le porte lorsqu’un débit de dose spécifié ou une dose cumulative est dépassé. Les EPD sont particulièrement utiles dans les zones à forte dose où le temps de séjour du porteur est limité en raison de contraintes de dose.
Caractéristiques des EPD
Le dosimètre personnel électronique, EPD, est capable d’afficher une lecture directe de la dose ou du débit de dose détecté en temps réel. Les dosimètres électroniques peuvent être utilisés comme dosimètre supplémentaire ainsi que comme dosimètre primaire. Les dosimètres passifs et les dosimètres personnels électroniques sont souvent utilisés ensemble pour se compléter. Pour estimer les doses efficaces, les dosimètres doivent être portés à une position du corps représentative de son exposition, généralement entre la taille et le cou, à l’avant du torse, face à la source radioactive. Les dosimètres sont généralement portés à l’extérieur des vêtements, autour de la poitrine ou du torse pour représenter la dose à «tout le corps». Des dosimètres peuvent également être portés aux extrémités ou près de l’œil pour mesurer une dose équivalente à ces tissus.
Le dosimètre peut être réinitialisé, généralement après avoir pris une lecture à des fins d’enregistrement, et ainsi réutilisé plusieurs fois. Les EPD ont un écran monté sur le dessus pour les rendre faciles à lire lorsqu’ils sont attachés à votre poche de poitrine. L’affichage numérique donne à la fois des informations sur la dose et le débit de dose, généralement en mSv et mSv / h. L’EPD a une alarme de débit de dose et une alarme de dose . Ces alarmes sont programmables. Différentes alarmes peuvent être définies pour différentes activités.
Par exemple:
- alarme de débit de dose à 100 μSv / h,
- alarme de dose: 100 μSv.
Si un point de consigne d’alarme est atteint, l’affichage correspondant clignote avec une lumière rouge et un bruit assez perçant est généré. Vous pouvez effacer l’alarme de débit de dose en reculant vers un champ de rayonnement inférieur, mais vous ne pouvez pas effacer l’alarme de dose avant d’avoir atteint un lecteur EPD. Les EPD peuvent également émettre un bip pour chaque 1 ou 10 μSv qu’ils enregistrent. Cela vous donne une indication audible des champs de rayonnement. Certains EPD ont des capacités de communication sans fil. Les EPD sont capables de mesurer une large gamme de doses de rayonnement allant des niveaux de routine (μSv) aux niveaux d’urgence (centaines de mSv ou unités de Sieverts) avec une grande précision, et peuvent afficher le taux d’exposition ainsi que les valeurs d’exposition cumulées. Parmi les technologies de dosimètres, les dosimètres personnels électroniques sont généralement les plus chers, les plus grands et les plus polyvalents.
……………………………………………………………………………………………………………………………….
Cet article est basé sur la traduction automatique de l’article original en anglais. Pour plus d’informations, voir l’article en anglais. Pouvez vous nous aider Si vous souhaitez corriger la traduction, envoyez-la à l’adresse: [email protected] ou remplissez le formulaire de traduction en ligne. Nous apprécions votre aide, nous mettrons à jour la traduction le plus rapidement possible. Merci