Facebook Instagram Youtube Twitter

Qu’est-ce que Geiger Counter vs Ionization Chamber – Definition

En général, le compteur Geiger ainsi que la chambre d’ionisation sont des types de détecteurs à ionisation gazeuse. Les chambres d’ionisation peuvent fonctionner en mode courant ou impulsion. En revanche, les compteurs Geiger sont presque toujours utilisés en mode impulsion. Dosimétrie des rayonnements

En général, le compteur Geiger ainsi que la chambre d’ionisation sont des types de  détecteurs à ionisation gazeuse. Ceux-ci peuvent être classés en fonction de la tension appliquée au détecteur:

Comme avec d’autres détecteurs, les chambres d’ionisation peuvent fonctionner en mode courant ou impulsion. En revanche, les compteurs proportionnels ou les compteurs Geiger sont presque toujours utilisés en mode impulsion. Les détecteurs de rayonnement ionisant peuvent être utilisés à la fois pour les mesures d’ activité ainsi que pour la mesure de dose . En connaissant l’énergie nécessaire pour former une paire d’ions, la dose peut être obtenue.

Compteur Geiger

Le compteur Geiger , également connu sous le nom de compteur Geiger-Mueller , est un appareil électrique qui détecte différents types de rayonnements ionisants . Cet appareil doit son nom aux deux physiciens qui ont inventé le compteur en 1928. Mueller était un élève de Hans Geiger.  Le compteur Geiger est largement utilisé dans des applications telles que la dosimétrie des rayonnements, la radioprotection , la physique expérimentale et l’industrie nucléaire. Un compteur Geiger se compose d’un tube Geiger-Müller (l’élément de détection qui détecte le rayonnement) et de l’électronique de traitement, qui affiche le résultat.

Le compteur Geiger peut détecter les rayonnements ionisants tels que les particules alpha  et  bêta , les  neutrons et  les rayons gamma en  utilisant l’effet d’ionisation produit dans un tube Geiger – Müller, qui donne son nom à l’instrument. La tension du détecteur est ajustée pour que les conditions correspondent à la région Geiger-Mueller .

Avantages du compteur Geiger-Mueller

  • Amplification élevée . Un signal fort (le facteur d’amplification peut atteindre environ 10 10 ) est produit par ces avalanches de forme et de hauteur indépendamment de l’ionisation primaire et de l’énergie du photon détecté. L’impulsion de tension dans ce cas serait un grand ≈ 1,6 V. facilement détectable. L’avantage technique d’un compteur Geiger est sa simplicité de construction et son insensibilité aux petites fluctuations de tension. Étant donné que le processus d’amplification de charge améliore considérablement le rapport signal / bruit du détecteur, l’amplification électronique ultérieure n’est généralement pas requise.
  • Simplicité . Les compteurs GM sont principalement utilisés pour l’ instrumentation portable en raison de sa sensibilité, de son circuit de comptage simple et de sa capacité à détecter les rayonnements de faible intensité. Les détecteurs GM sont généralement plus sensibles aux rayonnements de faible énergie et de faible intensité que les détecteurs proportionnels ou à chambre ionique.
  • Électronique plus simple . Les détecteurs GM peuvent être utilisés avec des boîtiers électroniques plus simples. La
    sensibilité d’ entrée d’un instrument de relevé GM typique est de 300 à 800 millivolts, tandis que la
    sensibilité d’ entrée d’un instrument de relevé proportionnel typique est de 2 millivolts.

Inconvénients du compteur Geiger-Mueller

  • Pas d’identification de particules, pas de résolution d’énergie . Étant donné que la hauteur d’impulsion est indépendante du type et de l’énergie du rayonnement, la discrimination n’est pas possible. Il n’y a aucune information sur la nature de l’ionisation à l’origine du pouls. Les détecteurs GM ne peuvent pas distinguer les différents types de rayonnement (α, β, γ), ni les différentes énergies de rayonnement. En effet, la taille de l’avalanche est indépendante de l’ionisation primaire qui l’a créée.
  • Temps mort . En raison de la grande avalanche induite par toute ionisation, un compteur Geiger met beaucoup de temps (environ 1 ms) à récupérer entre les impulsions successives. Par conséquent, les compteurs Geiger ne sont pas en mesure de mesurer des taux de rayonnement élevés en raison du « temps mort » du tube.

Chambre d’ionisation

La chambre d’ionisation , également connue sous le nom de  chambre d’ions , est un appareil électrique qui détecte différents types de  rayonnements ionisants . La tension du détecteur est ajustée pour que les conditions correspondent à la  région d’ionisation . La tension n’est pas suffisamment élevée pour produire une amplification de gaz (ionisation secondaire). 

Avantages des chambres d’ionisation

  • Mode actuel. Les chambres d’ionisation  sont préférées  pour les débits de dose de rayonnement élevés  car elles n’ont pas de «temps mort», un phénomène qui affecte la précision du tube Geiger-Mueller à des débits de dose élevés. Cela est dû au fait qu’il n’y a pas d’amplification inhérente du signal dans le milieu de fonctionnement et donc ces types de compteurs ne nécessitent pas beaucoup de temps pour se remettre de grands courants. De plus, comme il n’y a pas d’amplification, ils offrent une excellente résolution énergétique, qui est principalement limitée par le bruit électronique. Les chambres d’ionisation peuvent fonctionner en  mode courant ou impulsion. En revanche, les compteurs proportionnels ou les compteurs Geiger sont presque toujours utilisés en mode impulsion. Les détecteurs de rayonnement ionisant peuvent être utilisés à la fois pour les mesures d’activité ainsi que pour la mesure de dose. En connaissant l’énergie nécessaire pour former une paire d’ions, la dose peut être obtenue. La  conception de la plaque plate est préférée  car elle a un volume actif bien défini et garantit que les ions ne s’accumuleront pas sur les isolateurs et provoqueront une distorsion du champ électrique.
  • Simplicité . Le courant de sortie est indépendant de la tension de fonctionnement du détecteur. Observez la zone plate de la courbe dans la zone de la chambre ionique. En conséquence, des alimentations moins régulées et donc moins chères et plus portables peuvent être utilisées avec des instruments à chambre ionique, tout en offrant une réponse raisonnablement précise.
  • Détection de neutrons . Dans les réacteurs nucléaires, les chambres d’ionisation en mode courant sont souvent utilisées pour détecter les neutrons et appartiennent au Système d’Instrumentation Nucléaire (NIS) . Par exemple, si la surface intérieure de la chambre d’ionisation est recouverte d’une fine couche de bore, la réaction (n, alpha) peut avoir lieu. La plupart des réactions (n, alpha) des neutrons thermiques sont des réactions  10B (n, alpha) 7Li  accompagnées d’ une émission gamma de 0,48 MeV  . De plus, l’isotope bore-10 a une section efficace de réaction (n, alpha) élevée sur tout  le spectre d’énergie neutronique. La particule alpha provoque l’ionisation à l’intérieur de la chambre et les électrons éjectés provoquent d’autres ionisations secondaires. Une autre méthode pour détecter les neutrons à l’aide d’une chambre d’ionisation consiste à utiliser le trifluorure de bore gazeux   (BF 3 ) au lieu de l’air dans la chambre. Les neutrons entrants produisent des particules alpha lorsqu’ils réagissent avec les atomes de bore dans le gaz détecteur. L’une ou l’autre méthode peut être utilisée pour détecter des neutrons dans un réacteur nucléaire.

Inconvénients des chambres d’ionisation

  • Aucune amplification de charge . Les détecteurs dans la région d’ionisation fonctionnent à une intensité de champ électrique faible, sélectionnée de manière à ce qu’aucune multiplication de gaz n’ait lieu. La charge collectée (signal de sortie) est indépendante de la tension appliquée et pour les particules uniques à ionisation minimale a tendance à être assez petite et nécessite généralement des amplificateurs spéciaux à faible bruit pour atteindre des performances de fonctionnement efficaces. Dans l’air, l’énergie moyenne nécessaire pour produire un ion est d’environ 34 eV, donc un rayonnement de 1 MeV complètement absorbé dans le détecteur produit environ  3 x 10 4  paires d’ions . Cependant, il s’agit d’un petit signal, ce signal peut être considérablement amplifié à l’aide d’une électronique standard. Un courant de 1 micro-ampère se compose d’environ 10 12  électrons par seconde.
  • Faible densité . Les rayons gamma déposent une quantité d’énergie considérablement plus faible dans le détecteur que les autres particules. L’efficacité de la chambre peut être encore augmentée par l’utilisation d’un gaz à haute pression.
  • Pour   que les particules alpha et  bêta  soient détectées par les chambres d’ionisation, elles doivent être pourvues d’une  fenêtre mince . Cette «fenêtre d’extrémité» doit être suffisamment mince pour que les particules alpha et bêta puissent pénétrer. Cependant, une fenêtre de presque n’importe quelle épaisseur empêchera une particule alpha d’entrer dans la chambre. La fenêtre est généralement en mica avec une densité d’environ 1,5 à 2,0 mg / cm 2 .
Détecteurs à ionisation gazeuse - Régions
Ce diagramme montre le nombre de paires d’ions générées dans le détecteur rempli de gaz, qui varie en fonction de la tension appliquée pour un rayonnement incident constant. Les tensions peuvent varier considérablement en fonction de la géométrie du détecteur et du type et de la pression du gaz. Cette figure indique schématiquement les différentes régions de tension pour les rayons alpha, bêta et gamma. Il existe six principales régions opérationnelles pratiques, où trois (ionisation, proportionnelle et région Geiger-Mueller) sont utiles pour détecter les rayonnements ionisants. Les particules alpha sont plus ionisantes que les particules bêta et que les rayons gamma, donc plus de courant est produit dans la région de la chambre ionique par alpha que bêta et gamma, mais les particules ne peuvent pas être différenciées. Plus de courant est produit dans la région de comptage proportionnel par les particules alpha que bêta, mais par la nature du comptage proportionnel, il est possible de différencier les impulsions alpha, bêta et gamma. Dans la région de Geiger, il n’y a pas de différenciation alpha et bêta, car tout événement d’ionisation unique dans le gaz entraîne la même sortie de courant.

……………………………………………………………………………………………………………………………….

Cet article est basé sur la traduction automatique de l’article original en anglais. Pour plus d’informations, voir l’article en anglais. Pouvez vous nous aider Si vous souhaitez corriger la traduction, envoyez-la à l’adresse: [email protected] ou remplissez le formulaire de traduction en ligne. Nous apprécions votre aide, nous mettrons à jour la traduction le plus rapidement possible. Merci