Facebook Instagram Youtube Twitter

¿Qué es el semiconductor extrínseco? Semiconductor dopado – Definición

Un semiconductor extrínseco, o semiconductor dopado, es un semiconductor, que fue dopado intencionalmente con el fin de modular sus propiedades eléctricas, ópticas y estructurales. Dosimetría de radiación

En general, los semiconductores son materiales, inorgánicos u orgánicos, que tienen la capacidad de controlar su conducción dependiendo de la estructura química, la temperatura, la iluminación y la presencia de dopantes. El nombre semiconductor proviene del hecho de que estos materiales tienen una conductividad eléctrica entre la de un metal, como cobre, oro, etc. y un aislante, como el vidrio. Tienen una brecha de energía inferior a 4eV (aproximadamente 1eV). En física de estado sólido, este intervalo de energía o intervalo de banda es un rango de energía entre la banda de valencia y la banda de conducción.donde los estados electrónicos están prohibidos. A diferencia de los conductores, los electrones en un semiconductor deben obtener energía (p. Ej., De la radiación ionizante) para atravesar el intervalo de banda y alcanzar la banda de conducción. Las propiedades de los semiconductores están determinadas por la brecha de energía entre las bandas de valencia y conducción.

Semiconductores extrínsecos – Semiconductores dopados

Un semiconductor extrínseco , o semiconductor dopado , es un semiconductor, que fue dopado intencionalmente con el fin de modular sus propiedades eléctricas, ópticas y estructurales. En el caso de detectores de semiconductores de radiación ionizante, el dopaje es la introducción intencional de impurezas en un semiconductor intrínseco con el fin de cambiar sus propiedades eléctricas. Por lo tanto, los semiconductores intrínsecos también se conocen como semiconductores puros o semiconductores de tipo i.

La adición de un pequeño porcentaje de átomos extraños en la red cristalina regular de silicio o germanio produce cambios dramáticos en sus propiedades eléctricas, ya que estos átomos extraños incorporados en la estructura cristalina del semiconductor proporcionan portadores de carga libre (electrones o agujeros de electrones) en el semiconductor. En un semiconductor extrínseco, son estos átomos dopantes extraños en la red cristalina los que proporcionan principalmente los portadores de carga que transportan corriente eléctrica a través del cristal. En general, hay dos tipos de átomos dopantes que dan como resultado dos tipos de semiconductores extrínsecos. Estos dopantes que producen los cambios controlados deseados se clasifican como aceptores o donantes de electrones. y los semiconductores dopados correspondientes se conocen como:

  • Semiconductores de tipo n.
  • Semiconductores tipo p.

Los semiconductores extrínsecos son componentes de muchos dispositivos eléctricos comunes, así como de muchos detectores de radiación ionizante. Para estos fines, un diodo semiconductor (dispositivos que permiten la corriente en una sola dirección) generalmente consta de semiconductores tipo p y tipo n colocados en unión entre sí.

semiconductores de tipo n

extrínseco - semiconductor dopado - tipo n - donanteUn semiconductor extrínseco que ha sido dopado con átomos donadores de electrones se llama semiconductor de tipo n, porque la mayoría de los portadores de carga en el cristal son electrones negativos. Como el silicio es un elemento tetravalente, la estructura cristalina normal contiene 4 enlaces covalentes de cuatro electrones de valencia. En el silicio, los dopantes más comunes son los elementos del grupo III y del grupo V. Los elementos del grupo V (pentavalente) tienen cinco electrones de valencia, lo que les permite actuar como donantes. Eso significa que la adición de estas impurezas pentavalentes como el arsénico, el antimonio o el fósforo contribuye a la formación de electrones libres, lo que aumenta en gran medida la conductividad del semiconductor intrínseco. Por ejemplo, un cristal de silicio dopado con boro (grupo III) crea un semiconductor de tipo p, mientras que un cristal dopado con fósforo (grupo V) da como resultado un semiconductor de tipo n.

Los electrones de conducción están completamente dominados por la cantidad de electrones donadores . Por lo tanto:

El número total de electrones de conducción es aproximadamente igual al número de sitios donantes, n≈N D .

La neutralidad de carga del material semiconductor se mantiene porque los sitios donantes excitados equilibran los electrones de conducción. El resultado neto es que el número de electrones de conducción aumenta, mientras que el número de agujeros se reduce. El desequilibrio de la concentración de portadores en las bandas respectivas se expresa por el número absoluto diferente de electrones y agujeros. Los electrones son portadores mayoritarios, mientras que los agujeros son portadores minoritarios en material de tipo n.

Semiconductores tipo p

extrínseco - semiconductor dopado - tipo p - aceptadorUn semiconductor extrínseco que ha sido dopado con átomos aceptores de electrones se llama semiconductor de tipo p , porque la mayoría de los portadores de carga en el cristal son agujeros de electrones (portadores de carga positiva). El silicio semiconductor puro es un elemento tetravalente , la estructura cristalina normal contiene 4 enlaces covalentes de cuatro electrones de valencia. En el silicio, los dopantes más comunes son los elementos del grupo III y del grupo V.. Todos los elementos del grupo III (trivalentes) contienen tres electrones de valencia, lo que hace que funcionen como aceptores cuando se usan para dopar silicio. Cuando un átomo aceptor reemplaza a un átomo de silicio tetravalente en el cristal, se crea un estado vacante (un agujero de electrones). Un agujero de electrones (a menudo simplemente llamado agujero) es la falta de un electrón en una posición en la que uno podría existir en un átomo o en una red atómica. Es uno de los dos tipos de portadores de carga responsables de crear corriente eléctrica en materiales semiconductores. Estos agujeros cargados positivamente pueden moverse de un átomo a otro en materiales semiconductores a medida que los electrones abandonan sus posiciones. La adición de impurezas trivalentes como boro , aluminio o galio.a un semiconductor intrínseco crea estos agujeros de electrones positivos en la estructura. Por ejemplo, un cristal de silicio dopado con boro (grupo III) crea un semiconductor de tipo p, mientras que un cristal dopado con fósforo (grupo V) da como resultado un semiconductor de tipo n.

El número de agujeros de electrones está completamente dominado por el número de sitios aceptores. Por lo tanto:

El número total de orificios es aproximadamente igual al número de sitios donantes, p ≈ N A .

La neutralidad de carga de este material semiconductor también se mantiene. El resultado neto es que aumenta el número de agujeros de electrones, mientras que se reduce el número de electrones de conducción. El desequilibrio de la concentración de portadores en las bandas respectivas se expresa por el número absoluto diferente de electrones y agujeros. Los agujeros de electrones son portadores mayoritarios , mientras que los electrones son portadores minoritarios en material tipo p.

La unión PN: unión sesgada inversa

El detector de semiconductores funciona mucho mejor como detector de radiación si se aplica un voltaje externo a través de la unión en la dirección de polarización inversa . La región de agotamiento funcionará como un detector de radiación. Se puede lograr una mejora mediante el uso de un voltaje de polarización inversa a la unión PN para agotar el detector de portadores libres, que es el principio de la mayoría de los detectores de semiconductores. La polarización inversa de una unión aumenta el grosor de la región de agotamiento porque se mejora la diferencia de potencial a través de la unión. Los detectores de germanio tienen una estructura pinen el que la región intrínseca (i) es sensible a la radiación ionizante, particularmente a los rayos X y los rayos gamma. Bajo polarización inversa, un campo eléctrico se extiende a través de la región intrínseca o agotada. En este caso, se aplica voltaje negativo al lado p y positivo al segundo. Los agujeros en la región p son atraídos desde la unión hacia el contacto p y de manera similar para los electrones y el contacto n. Esta carga, que es proporcional a la energía depositada en el detector por el fotón entrante, se convierte en un pulso de voltaje mediante un preamplificador sensible a la carga integral.

Ver también: detectores de germanio, MIRION Technologies. <disponible en: https://www.mirion.com/products/germanium-detectors>.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.