Halbleiterdetektoren auf Germaniumbasis werden am häufigsten dort eingesetzt, wo eine sehr gute Energieauflösung erforderlich ist, insbesondere für die Gammaspektroskopie sowie die Röntgenspektroskopie. In der Gammaspektroskopie wird Germanium bevorzugt, da seine Ordnungszahl viel höher als die von Silizium ist und die Wahrscheinlichkeit einer Wechselwirkung mit Gammastrahlen erhöht. Darüber hinaus hat Germanium eine niedrigere durchschnittliche Energie, die zur Erzeugung eines Elektronen-Loch-Paares erforderlich ist: 3,6 eV für Silizium und 2,9 eV für Germanium. Dies bietet letztere auch eine bessere Energieauflösung. Andererseits müssen die Detektoren, um eine maximale Effizienz zu erreichen, bei sehr niedrigen Temperaturen von flüssigem Stickstoff (-196 ° C) arbeiten, da bei Raumtemperaturen das durch die thermische Erregung verursachte Rauschen sehr hoch ist.
Da Germaniumdetektoren die höchste heute allgemein verfügbare Auflösung erzeugen, werden sie zur Messung von Strahlung in einer Vielzahl von Anwendungen verwendet, einschließlich Personal- und Umgebungsüberwachung auf radioaktive Kontamination, medizinische Anwendungen, radiometrische Tests, nukleare Sicherheit und Sicherheit von Kernkraftwerken.
Anwendung von Germaniumdetektoren – Gammaspektroskopie
Das Studium und die Analyse von Gammastrahlenspektren für wissenschaftliche und technische Zwecke wird wie geschrieben als Gammaspektroskopie bezeichnet, und Gammastrahlenspektrometer sind die Instrumente, die solche Daten beobachten und sammeln. Ein Gammastrahlenspektrometer (GRS) ist ein hoch entwickeltes Gerät zur Messung der Energieverteilung von Gammastrahlung. Für die Messung von Gammastrahlen über mehreren hundert keV sind zwei Detektorkategorien von großer Bedeutung, anorganische Szintillatoren wie NaI (T1) und Halbleiterdetektoren. In den vorhergehenden Artikeln haben wir die Gammaspektroskopie unter Verwendung eines Szintillationsdetektors beschrieben, der aus einem geeigneten Szintillatorkristall, einer Photovervielfacherröhre und einer Schaltung zum Messen der Höhe der vom Photovervielfacher erzeugten Impulse besteht. Die Vorteile eines Szintillationszählers sind seine Effizienz (große Größe und hohe Dichte) und die möglichen hohen Genauigkeiten und Zählraten. Aufgrund der hohen Ordnungszahl von Jod führt eine große Anzahl aller Wechselwirkungen zu einer vollständigen Absorption der Gammastrahlenenergie, so dass der Photofraktion hoch ist.
Wenn jedoch eine perfekte Energieauflösung erforderlich ist, müssen wir einen Detektor auf Germaniumbasis verwenden , beispielsweise den HPGe-Detektor . Halbleiterdetektoren auf Germaniumbasis werden am häufigsten dort eingesetzt, wo eine sehr gute Energieauflösung erforderlich ist, insbesondere für die Gammaspektroskopie sowie die Röntgenspektroskopie. In der Gammaspektroskopie wird Germanium bevorzugt, da seine Ordnungszahl viel höher als die von Silizium ist und die Wahrscheinlichkeit einer Wechselwirkung mit Gammastrahlen erhöht. Darüber hinaus hat Germanium eine niedrigere durchschnittliche Energie, die zur Erzeugung eines Elektronen-Loch-Paares erforderlich ist: 3,6 eV für Silizium und 2,9 eV für Germanium. Dies bietet letztere auch eine bessere Energieauflösung. Das FWHM (volle Breite bei halbem Maximum) für Germaniumdetektoren ist eine Funktion der Energie. Für ein 1,3-MeV-Photon beträgt die FWHM 2,1 keV, was sehr niedrig ist.