O que é o poder de parada – Bethe Formula – Definição

A expressão clássica que descreve o poder de parada específico é conhecida como fórmula de Bethe. A fórmula não-relativística foi encontrada por Hans Bethe em 1930. Dosimetria de radiação

Uma variável conveniente que descreve as propriedades de ionização do meio circundante é o poder de parada . O poder de parada linear do material é definido como a razão entre a perda de energia diferencial da partícula dentro do material e o comprimento do caminho diferencial correspondente :stopping_power_formula

, onde T é a energia cinética da partícula carregada, íon é o número de pares de elétrons-íons formados por unidade de comprimento do caminho, e I denota a energia média necessária para ionizar um átomo no meio. Para partículas carregadas, S aumenta à medida que a velocidade das partículas diminui . A expressão clássica que descreve a perda de energia específica é conhecida como fórmula de Bethe. A fórmula não-relativística foi encontrada por Hans Bethe em 1930. A versão relativística (veja abaixo) também foi encontrada por Hans Bethe em 1932.

stopping_power_formula_2

Nesta expressão, m é a massa restante do elétron, β é igual a v / c, o que expressa a velocidade da partícula em relação à velocidade da luz, γ é o fator de Lorentz da partícula, Q é igual à sua carga, Z é a número atômico do meio en é a densidade de átomos no volume. Para partículas não relativísticas (partículas carregadas pesadas são principalmente não relativísticas), dT / dx depende de 1 / v 2 . Isso pode ser explicado pelo maior tempo que a partícula carregada gasta no campo negativo do elétron, quando a velocidade é baixa.

O poder de parada da maioria dos materiais é muito alto para partículas carregadas pesadas e essas partículas têm faixas muito curtas. Por exemplo, o intervalo de uma partícula alfa de 5 MeV é de aproximadamente apenas 0,002 cm em liga de alumínio. A maioria das partículas alfa pode ser parada por uma folha de papel comum ou tecido vivo. Portanto, a blindagem das partículas alfa não representa um problema difícil, mas, por outro lado, os nuclídeos radioativos alfa podem levar a sérios riscos à saúde quando ingeridos ou inalados (contaminação interna).

Específicos dos fragmentos de fissão

A fissão fragmenta três duas características principais (um pouco diferentes das partículas alfa ou prótons), que influenciam a perda de energia durante a viagem pela matéria.

  • Energia inicial alta. Resulta em uma grande taxa efetiva.
  • Grande carga efetiva. Os fragmentos de fissão começam com a falta de muitos elétrons; portanto, sua perda específica é maior que a perda específica de alfa, por exemplo.
  •  Coleta imediata de elétrons. Resultados em alterações de (-dE / dx) durante a viagem.

Esses recursos resultam na diminuição contínua da carga efetiva transportada pelo fragmento de fissão à medida que o fragmento pára e na diminuição contínua de -dE / dx. A diminuição resultante em -dE / dx (do coletor de elétrons) é maior que o aumento que acompanha uma redução na velocidade. O intervalo do fragmento de fissão típico pode ser aproximadamente metade do de uma partícula alfa de 5 MeV.

 

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: translations@nuclear-power.net ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.