Facebook Instagram Youtube Twitter

Was ist ein EPD – elektronisches Personendosimeter – Definition?

Ein elektronisches Personendosimeter (EPD) ist ein modernes Dosimeter, mit dem die kumulative Dosis und die aktuelle Dosisleistung kontinuierlich abgelesen und der Träger gewarnt werden kann. Strahlendosimetrie

Ein elektronisches Personendosimeter ist ein modernes Dosimeter, das die kumulative Dosis und die aktuelle Dosisrate kontinuierlich ablesen und den Träger warnen kann, wenn eine bestimmte Dosisrate oder eine kumulative Dosis überschritten wird. EPDs sind besonders in Bereichen mit hohen Dosen nützlich, in denen die Verweilzeit des Trägers aufgrund von Dosisbeschränkungen begrenzt ist.

Arten von EPDs

EPD - Elektronische Personendosimeter
EPD – Elektronische Personendosimeter mit Si-Chip

EPDs sind batteriebetrieben und verwenden meistens entweder eine kleine Geiger-Müller-Röhre (GM) oder einen Halbleiter  ( Si-Chip ), in dem ionisierende Strahlung Ladungen freisetzt, die zu messbarem elektrischen Strom führen.

  • GM-Zähler . Ein Geigerzähler besteht aus einer Geiger-Müller-Röhre (dem Sensorelement, das die Strahlung erfasst) und der Verarbeitungselektronik, die das Ergebnis anzeigt. GM-Zähler werden hauptsächlich für tragbare Instrumente verwendet, da sie empfindlich sind, über eine einfache Zählschaltung verfügen und schwach strahlende Strahlung erfassen können. Aufgrund der großen Lawine, die durch eine Ionisierung verursacht wird, benötigt ein Geigerzähler eine lange Zeit (etwa 1 ms), um sich zwischen aufeinanderfolgenden Impulsen zu erholen. Geigerzähler können daher aufgrund der „ Totzeit “ der Röhrekeine hohen Strahlungsraten messen.
  • Halbleiterdetektor . Halbleiterdetektoren basieren auf der Ionisierung in einem Festkörper (z. B. Silizium) und umfassen verschiedene Arten von Festkörpern mit zwei Anschlüssen, die als Dioden bezeichnet werden. Zum Beispiel eine Siliziumdiode, die eine Stiftstruktur aufweist, in der der intrinsische (i) Bereich gegenüber ionisierender Strahlung, insbesondere Röntgenstrahlen und Gammastrahlen, empfindlich ist. Unter umgekehrter Vorspannung erstreckt sich ein elektrisches Feld über den intrinsischen oder abgereicherten Bereich. In diesem Fall wird eine negative Spannung an die p-Seite und eine positive an die zweite angelegt. Löcher in der p-Region werden vom Übergang in Richtung des p-Kontakts und in ähnlicher Weise für Elektronen und den n-Kontakt angezogen.
  • Szintillationsdetektor . Einige EPDs verwenden einen Szintillationskristall wie Natriumiodid (NaI) oder Cäsiumiodid (CsI) mit einer Fotodiode oder einer Fotovervielfacherröhre, um durch Strahlung freigesetzte Fotonen zu messen.

Eigenschaften von EPDs

Das elektronische Personendosimeter EPD kann die ermittelte Dosis oder Dosisleistung in Echtzeit direkt anzeigen . Elektronische Dosimeter können sowohl als ergänzendes Dosimeter als auch als primäres Dosimeter verwendet werden. Die passiven Dosimeter und die elektronischen Personendosimeter werden häufig zusammen verwendet, um sich zu ergänzen. Um effektive Dosen abzuschätzen, müssen Dosimeter an einer Position des Körpers getragen werden, die für seine Exposition repräsentativ ist, typischerweise zwischen der Taille und dem Nacken auf der Vorderseite des Rumpfes, die der radioaktiven Quelle zugewandt ist. Dosimeter werden normalerweise an der Außenseite der Kleidung, am Brustkorb oder am Oberkörper getragen, um die Dosis für den „ganzen Körper“ darzustellen. Dosimeter können auch an den Extremitäten oder in der Nähe des Auges getragen werden, um die diesen Geweben entsprechende Dosis zu messen.

Das Dosimeter kann zurückgesetzt werden, in der Regel nach einer Messung zu Aufzeichnungszwecken, und dadurch mehrmals wiederverwendet werden. Die EPDs verfügen über ein oben angebrachtes Display, das das Ablesen erleichtert, wenn sie an Ihrer Brusttasche befestigt sind. Die Digitalanzeige gibt sowohl Dosis- als auch Dosisleistungsinformationen in mSv und mSv / h an. Die EPD verfügt über einen Dosisleistungsalarm und einen Dosisleistungsalarm . Diese Alarme sind programmierbar. Für verschiedene Aktivitäten können unterschiedliche Alarme eingestellt werden.

Beispielsweise:

  • Dosisleistungsalarm bei 100 μSv / h,
  • Dosisalarm: 100 μSv.

Wenn ein Alarmsollwert erreicht ist, blinkt die entsprechende Anzeige zusammen mit einem roten Licht und es wird ein ziemlich durchdringendes Geräusch erzeugt. Sie können den Dosisleistungsalarm löschen, indem Sie sich in ein niedrigeres Strahlungsfeld zurückziehen. Sie können den Dosisalarm jedoch erst löschen, wenn Sie zu einem EPD-Lesegerät gelangen. EPDs können auch einen Piepton für jede von ihnen registrierte 1 oder 10 μSv abgeben. Dies gibt Ihnen einen hörbaren Hinweis auf die Strahlungsfelder. Einige EPDs verfügen über drahtlose Kommunikationsfunktionen. EPDs sind in der Lage, einen weiten Strahlungsdosisbereich von Routinewerten (μSv) bis zu Notfallwerten (Hunderte mSv oder Einheiten von Sieverts) mit hoher Präzision zu messen und können sowohl die Expositionsrate als auch die akkumulierten Expositionswerte anzeigen. Von den Dosimetertechnologien sind elektronische Personendosimeter im Allgemeinen die teuersten, größten und vielseitigsten.

DMC 3000 – Mirion Technologies Inc.

Das DMC 3000 ist ein elektronisches Strahlungsdosimeter (EPD), das Dosis- und Umgebungsdosisratenwerte für das Tiefdosisäquivalent H p liefert (10). Es ist eines der am häufigsten verwendeten EPDs auf dem Markt. Es wird ein Si-Chip- Detektor mit einer Gamma-Empfindlichkeit von 180 cps / R / h verwendet. Dieses elektronische Personendosimeter weist die folgenden Eigenschaften auf:

  • Energieantwort (Röntgen und Gamma) von 15 keV bis 7 Mev.
  • Anzeigebereich der Dosismessung: zwischen 1 μSv und 10 Sv.
  • Anzeigebereich für die Ratenmessung: zwischen 10 μSv / h und 10 Sv / h.

Das Gerät misst 3,3 x 1,9 x 0,7 Zoll und kann an einer Tasche, einem Gürtel oder einem Lanyard befestigt werden. Es wird mit wiederaufladbaren oder AAA-Batterien mit einer Batterielebensdauer von bis zu 2.500 Stunden Dauerbetrieb betrieben. Akustische und visuelle Anzeigen signalisieren einen niedrigen Batteriestand. Das Gerät verfügt über ein hintergrundbeleuchtetes achtstelliges LCD-Display. Navigation mit zwei Tasten; und visuelle LED-, akustische und vibrierende Alarmanzeigen. Die Kalibrierung wird voraussichtlich 9 Monate bei routinemäßiger Anwendung und 2 Jahre bei Lagerung dauern. Die Daten werden im nichtflüchtigen Speicher gespeichert. Der Betriebsbereich für das Dosimeter reicht von 14 ° F bis 122 ° F und bis zu 90 Prozent relativer Luftfeuchtigkeit. Es wird auf 1,5 Meter fallen getestet. Der DMC 3000 verfügt über optionale externe Module, die die Erkennungs- und Kommunikationsfunktionen des Geräts erweitern. Dazu gehört ein Beta-Modul, das H p bereitstellt(0,07) zur Messung der Betastrahlung; ein Neutronenmodul, das eine Messung der H p (10) -Neutronenstrahlung liefert ; und ein Telemetriemodul, das die Übertragung von Daten an eine externe Station ermöglicht.

Siehe auch: Marktbericht über Strahlungsdosimeter für Reaktion und Wiederherstellung. Nationales Labor für städtische Sicherheitstechnologie. SAVER-T-MSR-4. <verfügbar unter: https://www.dhs.gov/sites/default/files/publications/Radiation-Dosimeters-Response-Recovery-MSR_0616-508_0.pdf>.

Vor- und Nachteile elektronischer Personendosimeter

Vorteile elektronischer Personendosimeter

  • EPDs können die erkannte Dosis und Dosisleistung in Echtzeit direkt ablesen.
  • EPDs haben einen Dosisleistungsalarm und einen Dosisalarm, der die Person, die ihn trägt, warnen kann, wenn eine bestimmte Dosisleistung oder eine kumulative Dosis überschritten wird.
  • Das Dosimeter kann in der Regel nach einer Messung zu Aufzeichnungszwecken zurückgesetzt und dadurch mehrfach wiederverwendet werden.
  • EPDs sind in der Lage, einen weiten Strahlungsdosisbereich von Routinewerten (μSv) bis zu Notfallwerten (Hunderte mSv oder Sieverts-Einheiten) mit hoher Präzision zu messen

Nachteile elektronischer Personendosimeter

  • EPDs sind im Allgemeinen die teuersten Dosimeter.
  • EPDs sind im Allgemeinen groß.
  • EPDs werden verwendet, um die Strahlenexposition aufgrund von Gammastrahlen, Röntgenstrahlen und manchmal Betateilchen zu messen und aufzuzeichnen. Für Neutronen sind TLDs leistungsfähiger.

Messung und Überwachung der Strahlendosis

In den vorherigen Kapiteln haben wir die äquivalente Dosis und die effektive Dosis beschrieben . Diese Dosen sind jedoch nicht direkt messbar . Zu diesem Zweck hat das ICRP eine Reihe von Betriebsgrößen eingeführt und definiert , die gemessen werden können und die eine angemessene Schätzung der Schutzgrößen liefern sollen. Diese Größen zielen darauf ab, eine konservative Schätzung des Werts der Schutzgrößen im Zusammenhang mit einer Exposition zu liefern, wobei sowohl eine Unterschätzung als auch eine zu starke Überschätzung vermieden werden.

Numerische Verknüpfungen zwischen diesen Größen werden durch Umrechnungskoeffizienten dargestellt , die für eine Referenzperson definiert sind. Es ist sehr wichtig, dass ein international vereinbarter Satz von Umrechnungskoeffizienten für die allgemeine Verwendung in der Strahlenschutzpraxis für berufliche Expositionen und Expositionen der Öffentlichkeit verfügbar ist. Zur Berechnung der Umrechnungskoeffizienten für die externe Exposition werden Berechnungsphantome zur Dosisbestimmung in verschiedenen Strahlungsfeldern verwendet. Für die Berechnung von Dosis-Koeffizienten aus der Aufnahme von Radionukliden werden biokinetische Modelle für Radionuklide, physiologische Referenzdaten und Rechenphantome verwendet.

Eine Reihe ausgewerteter Daten von Umwandlungskoeffizienten zum Schutz und Betriebsgrößen für die externe Exposition gegenüber monoenergetischer Photonen-, Neutronen- und Elektronenstrahlung unter bestimmten Bestrahlungsbedingungen wird in Berichten veröffentlicht (ICRP, 1996b, ICRU, 1997).

Überwachung der Strahlendosis - BetriebsmengenIm Allgemeinen definiert das ICRP Betriebsgrößen für die Flächen- und Einzelüberwachung externer Expositionen. Die Betriebsgrößen für die Flächenüberwachung sind:

  • Umgebungsdosisäquivalent H * (10). Das Umgebungsdosisäquivalent ist eine Betriebsgröße zur Flächenüberwachung stark eindringender Strahlung.
  • Richtungsdosisäquivalent H ‚(d, Ω). Das Richtungsdosisäquivalent ist eine Betriebsgröße zur Flächenüberwachung schwach durchdringender Strahlung.

Die Betriebsgrößen für die individuelle Überwachung sind:

  • Persönliches Dosisäquivalent , p (0,07) . DasDosisäquivalent H p (0,07) ist eine Betriebsgröße für die individuelle Überwachung zur Beurteilung der Dosis für die Haut sowie für Hände und Füße.
  • Persönliches Dosisäquivalent , p (10) . Das p (10) -Dosisäquivalent ist eine Betriebsgröße für die individuelle Überwachung zur Beurteilung der wirksamen Dosis.

Sonderreferenz: ICRP, 2007. Die Empfehlungen der Internationalen Strahlenschutzkommission von 2007. ICRP-Veröffentlichung 103. Ann. ICRP 37 (2-4).

Strahlungsmessung und -überwachung - Mengen und Grenzen

Dosisgrenzen

Siehe auch: Dosisgrenzen

Die Dosisgrenzen sind in zwei Gruppen unterteilt: die Öffentlichkeit und beruflich exponierte Arbeitnehmer. Laut ICRP bezieht sich die berufliche Exposition auf alle Expositionen, die Arbeitnehmer im Laufe ihrer Arbeit erleiden, mit Ausnahme von

  1. ausgeschlossene Expositionen und Expositionen von freigestellten Tätigkeiten mit Strahlung oder freigestellten Quellen
  2. jede medizinische Exposition
  3. die normale lokale natürliche Hintergrundstrahlung.

In der folgenden Tabelle sind die Dosisgrenzwerte für beruflich exponierte Arbeitnehmer und für die Öffentlichkeit zusammengefasst:

Dosisgrenzen - Strahlung
Tabelle der Dosisgrenzwerte für beruflich exponierte Arbeitnehmer und für die Öffentlichkeit.
Datenquelle: ICRP, 2007. Die Empfehlungen der Internationalen Strahlenschutzkommission von 2007. ICRP-Veröffentlichung 103. Ann. ICRP 37 (2-4).

Gemäß der Empfehlung des ICRP in seiner Stellungnahme zu Gewebereaktionen vom 21. April 2011 wurde die äquivalente Dosisgrenze für die Augenlinse für die berufliche Exposition in geplanten Expositionssituationen von 150 mSv / Jahr auf durchschnittlich 20 mSv / Jahr gesenkt über definierte Zeiträume von 5 Jahren ohne jährliche Dosis in einem einzigen Jahr über 50 mSv.

Die Grenzwerte für die wirksame Dosis beziehen sich auf die Summe der relevanten wirksamen Dosen aus externer Exposition im angegebenen Zeitraum und der festgesetzten wirksamen Dosis aus der Aufnahme von Radionukliden im selben Zeitraum. Für Erwachsene wird die festgelegte wirksame Dosis für einen Zeitraum von 50 Jahren nach der Einnahme berechnet, während sie für Kinder für den Zeitraum bis zum Alter von 70 Jahren berechnet wird. Die effektive Ganzkörperdosisgrenze von 20 mSv ist ein Durchschnittswert über fünf Jahre. Die tatsächliche Grenze liegt bei 100 mSv in 5 Jahren, mit nicht mehr als 50 mSv in einem Jahr.

Sievert – Einheit der äquivalenten Dosis

Im Strahlenschutz ist der Sievert eine abgeleitete Einheit aus äquivalenter Dosis und effektiver Dosis . Der Sievert repräsentiert die äquivalente biologische Wirkung der Ablagerung eines Joule Gammastrahlenenergie in einem Kilogramm menschlichem Gewebe. Die Einheit Sievert ist für den Strahlenschutz von Bedeutung und wurde nach dem schwedischen Wissenschaftler Rolf Sievert benannt, der einen Großteil der frühen Arbeiten zur Strahlendosimetrie in der Strahlentherapie durchgeführt hat.

Wie bereits geschrieben, wird der Sievert für Strahlendosismengen wie Äquivalentdosis und effektive Dosis verwendet. Die äquivalente Dosis (Symbol T ) ist eine Dosismenge, die für einzelne Organe berechnet wird (Index T – Gewebe). Die äquivalente Dosis basiert auf der absorbierten Dosis eines Organs, angepasst an die Wirksamkeit der Art der Strahlung . Äquivalentdosis ist das Symbol H gegeben T . Die SI-Einheit von T ist der Sievert (Sv) oder es wird immer noch Rem ( Röntgenäquivalent Mann ) verwendet ( 1 Sv = 100 Rem ).

Beispiele für Dosen in Sieverts

Wir müssen beachten, dass Strahlung überall um uns herum ist. In, um und über der Welt, in der wir leben. Es ist eine natürliche Energiekraft, die uns umgibt. Es ist ein Teil unserer natürlichen Welt, der seit der Geburt unseres Planeten hier ist. In den folgenden Punkten versuchen wir, enorme Bereiche der Strahlenexposition auszudrücken, die aus verschiedenen Quellen erhalten werden können.

  • 0,05 µSv – Schlafen neben jemandem
  • 0,09 µSv – Ein Jahr lang in einem Umkreis von 30 Meilen um ein Kernkraftwerk leben
  • 0,1 µSv – Eine Banane essen
  • 0,3 µSv – Ein Jahr lang in einem Umkreis von 50 Meilen um ein Kohlekraftwerk leben
  • 10 µSv – Durchschnittliche Tagesdosis aus natürlichem Hintergrund
  • 20 µSv – Röntgenaufnahme der Brust
  • 40 µSv – Ein 5-stündiger Flugzeugflug
  • 600 µSv – Mammographie
  • 1 000 µSv – Dosisgrenze für einzelne Mitglieder der Öffentlichkeit, effektive Gesamtdosis pro Jahr
  • 3 650 µSv – Durchschnittliche jährliche Dosis aus natürlichem Hintergrund
  • 5 800 µSv – Brust-CT-Scan
  • 10 000 µSv – Durchschnittliche jährliche Dosis aus natürlichem Hintergrund in Ramsar, Iran
  • 20 000 µSv – Einzel-Ganzkörper-CT
  • 175 000 µSv – Jährliche Dosis natürlicher Strahlung an einem Monazitstrand in der Nähe von Guarapari, Brasilien.
  • 5 000 000 µSv – Dosis, die einen Menschen mit einem 50% igen Risiko innerhalb von 30 Tagen tötet (LD50 / 30), wenn die Dosis über einen sehr kurzen Zeitraum verabreicht wird .

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: [email protected] oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.