Facebook Instagram Youtube Twitter

Was ist äquivalente Dosis – Formel – Gleichung – Definition?

Äquivalentdosisformel – Gleichung. In diesem Artikel werden wichtige Formeln und Gleichungen zusammengefasst, die zur Berechnung der Äquivalentdosis verwendet werden können. Strahlendosimetrie

Strahlungsgewichtungsfaktoren - aktuell - ICRPDie Äquivalentdosis (Symbol T ) ist eine für einzelne Organe berechnete Dosismenge (Index T – Gewebe). Die äquivalente Dosis basiert auf der absorbierten Dosis eines Organs, angepasst an die Wirksamkeit der Strahlungsart . Äquivalentdosis ist das Symbol H gegeben T . Die SI – Einheit von T ist die Sievert (Sv) oder aber rem (roentgen equivalent man) ist immer noch häufig verwendet ( 1 Sv = 100 rem ). Die gewichtete Dosis wurde als Organ- oder Gewebeäquivalentdosis bezeichnet:

Äquivalentdosisgleichung - Definition

Äquivalentdosis - Definition

Eine Dosis von  einem Sv,  die durch Gammastrahlung verursacht wird, entspricht einer Energiedeposition von einem Joule pro Kilogramm Gewebe. Das heißt, ein Sieb entspricht einem Grau von Gammastrahlen, die in einem bestimmten Gewebe abgelagert sind. Andererseits kann ein ähnlicher biologischer Schaden (ein Sievert) nur durch 1/20 der Alphastrahlung verursacht werden.

Ein Sieb ist eine große Menge der Äquivalentdosis. Eine Person, die eine Ganzkörperdosis von 1 Sv absorbiert hat, hat 1 Joule Energie in jedem kg Körpergewebe absorbiert (im Falle von Gammastrahlen).

In Industrie und Medizin gemessene äquivalente Dosen weisen gewöhnlich niedrigere Dosen als ein Sieb auf, und die folgenden Vielfachen werden häufig verwendet:

1 mSv (Millisievert) = 1E-3 Sv

1 uSv (Mikrosievert) = 1E-6 Sv

Die Umrechnungen von SI-Einheiten in andere Einheiten lauten wie folgt:

  • 1 Sv = 100 rem
  • 1 mSv = 100 mrem

Äquivalente Dosisleistung

Die äquivalente Dosisrate ist die Rate, mit der eine äquivalente Dosis erhalten wird. Es ist ein Maß für die Strahlungsdosisintensität (oder -stärke). Die äquivalente Dosisleistung ist daher definiert als:

Äquivalentdosisleistung - Definition

In herkömmlichen Einheiten wird es in mSv / s ,  Sv / h, mrem / s oder rem / h gemessen . Da die Menge der Strahlenexposition direkt (linear) von der Zeit abhängt, die Menschen in der Nähe der Strahlungsquelle verbringen, entspricht die absorbierte Dosis der Stärke des Strahlungsfeldes (Dosisleistung) multipliziert mit der in diesem Feld verbrachten Zeit. Das obige Beispiel zeigt, dass eine Person eine Dosis von 25 Millirem erwarten kann, wenn sie 30 Minuten in einem Feld von 50 Millirem / Stunde bleibt.

Berechnung der abgeschirmten Dosisleistung

Angenommen, die punktisotrope Quelle enthält 1,0 Ci von 137 Cs und hat eine Halbwertszeit von 30,2 Jahren . Es ist zu beachten, dass die Beziehung zwischen der Halbwertszeit und der Menge eines Radionuklids, die erforderlich ist, um eine Aktivität von einem Curie zu ergeben , unten gezeigt ist. Diese Materialmenge kann mit λ berechnet werden, der Zerfallskonstante bestimmter Nuklide:

Curie - Aktivitätseinheit

Etwa 94,6 Prozent zerfallen durch Beta-Emission zu einem metastabilen Kernisomer von Barium: Barium-137m. Der Hauptphotonenpeak von Ba-137m beträgt 662 keV . Nehmen Sie für diese Berechnung an, dass alle Zerfälle diesen Kanal durchlaufen.

Berechnen Sie die primäre Photonendosisrate in Grau pro Stunde (Gy.h -1 ) an der Außenfläche eines 5 cm dicken Bleischilds . Dann berechnet die Äquivalentdosisleistung . Angenommen, dieses externe Strahlungsfeld durchdringt den gesamten Körper gleichmäßig . Die Primärphotonendosisrate vernachlässigt alle Sekundärteilchen. Angenommen, der effektive Abstand der Quelle vom Dosispunkt beträgt 10 cm . Wir werden auch annehmen, dass der Dosispunkt Weichgewebe ist und vernünftigerweise durch Wasser simuliert werden kann, und wir verwenden den Massenenergieabsorptionskoeffizienten für Wasser.

Siehe auch: Gammastrahlendämpfung

Siehe auch: Abschirmung von Gammastrahlen

Lösung:

Die Primärphotonendosisrate wird exponentiell abgeschwächt , und die Dosisrate von Primärphotonen unter Berücksichtigung der Abschirmung ist gegeben durch:

Dosisleistungsberechnung

Wie zu sehen ist, berücksichtigen wir den Aufbau von Sekundärstrahlung nicht. Wenn Sekundärteilchen erzeugt werden oder wenn die Primärstrahlung ihre Energie oder Richtung ändert, ist die effektive Dämpfung viel geringer. Diese Annahme unterschätzt im Allgemeinen die wahre Dosisleistung, insbesondere für dicke Schilde und wenn der Dosispunkt nahe an der Schildoberfläche liegt, aber diese Annahme vereinfacht alle Berechnungen. In diesem Fall ist die tatsächliche Dosisleistung (mit dem Aufbau von Sekundärstrahlung) mehr als doppelt so hoch.

Um die absorbierte Dosisleistung zu berechnen , müssen wir in der Formel Folgendes verwenden:

  • k = 5,76 · 10 & supmin; & sup7;
  • S = 3,7 × 10 10 s –1
  • E = 0,662 MeV
  • μ t / ρ =  0,0326 cm 2 / g (Werte sind bei NIST erhältlich)
  • μ = 1,289 cm -1 (Werte sind bei NIST erhältlich)
  • D = 5 cm
  • r = 10 cm

Ergebnis:

Die resultierende absorbierte Dosisrate in Grautönen pro Stunde beträgt dann:

absorbierte Dosisleistung - grau - Berechnung

Da der Strahlungsgewichtungsfaktor für Gammastrahlen gleich eins ist und wir das einheitliche Strahlungsfeld angenommen haben, können wir die äquivalente Dosisrate direkt aus der absorbierten Dosisrate berechnen als:

Äquivalentdosis - Sievert - Berechnung

Wenn wir den Aufbau von Sekundärstrahlung berücksichtigen wollen, müssen wir den Aufbaufaktor einbeziehen. Die erweiterte Formel für die Dosisleistung lautet dann:

absorbierte Dosisleistung - grau

 

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: [email protected] oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.