Facebook Instagram Youtube Twitter

O que é vantagem e desvantagem das câmaras de ionização – Definição

Vantagens e desvantagens das câmaras de ionização. Nos reatores nucleares, as câmaras de ionização no modo atual são frequentemente usadas para detectar nêutrons e pertencem ao Sistema de Instrumentação de Nêutrons (NIS). Dosimetria de Radiação
Detector de radiação ionizante - esquema básico
Os detectores de radiação ionizante consistem em duas partes que geralmente estão conectadas. A primeira parte consiste em um material sensível, constituído por um composto que sofre alterações quando exposto à radiação. O outro componente é um dispositivo que converte essas alterações em sinais mensuráveis.

câmara de ionização , também conhecida como câmara de íons , é um dispositivo elétrico que detecta vários tipos de radiação ionizante . A tensão do detector é ajustada para que as condições correspondam à região de ionização . A tensão não é alta o suficiente para produzir amplificação de gás (ionização secundária).

Vantagens das câmaras de ionização

  • Modo atual. As câmaras de ionização são preferidas para altas taxas de dose de radiação, porque não possuem “tempo morto”, um fenômeno que afeta a precisão do tubo Geiger-Mueller em altas taxas de dose. Isso se deve ao fato de não haver amplificação de sinal inerente no meio operacional e, portanto, esses tipos de contadores não requerem muito tempo para se recuperar de grandes correntes. Além disso, como não há amplificação, eles oferecem excelente resolução de energia, limitada principalmente pelo ruído eletrônico. Câmaras de ionização podem ser operadas no modo atual ou de pulso. Por outro lado, contadores proporcionais ou contadores Geiger são quase sempre usados ​​no modo de pulso. Detectores de radiação ionizante podem ser usados ​​tanto para medições de atividade quanto para medições de dose. Com o conhecimento sobre a energia necessária para formar um par de íons – a dose pode ser obtida. O design da placa plana é preferido porque possui um volume ativo bem definido e garante que os íons não se acumulem nos isoladores e causem uma distorção do campo elétrico.
  • Simplicidade . A corrente de saída é independente da tensão de operação do detector. Observe a região plana da curva na região da câmara de íons. Como resultado, fontes de alimentação menos reguladas e, portanto, mais baratas e mais portáteis podem ser usadas com instrumentos de câmara de íons e ainda oferecem uma resposta razoavelmente precisa.
  • Detecção de nêutrons . Nos reatores nucleares, as câmaras de ionização no modo atual são frequentemente usadas para detectar nêutrons e pertencem ao Sistema de Instrumentação de Nêutrons (NIS). Por exemplo, se a superfície interna da câmara de ionização for revestida com uma fina camada de boro, a reação (n, alfa) poderá ocorrer. A maioria das reações (n, alfa) dos nêutrons térmicos são reações 10B (n, alfa) 7Li acompanhadas por emissão gama de 0,48 MeV . Além disso, o isótopo boro-10 possui uma alta seção transversal da reação (n, alfa) ao longo de todo o espectro de energia de nêutrons . A partícula alfa causa ionização dentro da câmara e elétrons ejetados causam ionizações secundárias adicionais. Outro método para detectar nêutrons usando uma câmara de ionização é usar o gástrifluoreto de boro (BF 3 ) em vez de ar na câmara. Os nêutrons recebidos produzem partículas alfa quando reagem com os átomos de boro no gás detector. Qualquer um dos métodos pode ser usado para detectar nêutrons no reator nuclear.(n, alfa) reações de 10B

Desvantagens das câmaras de ionização

  • Sem amplificação de carga . Os detectores na região de ionização operam com uma força de campo elétrico baixa, selecionada de forma que não ocorra multiplicação de gás. A carga coletada (sinal de saída) é independente da tensão aplicada e as partículas ionizantes mínimas tendem a ser muito pequenas e geralmente requerem amplificadores especiais de baixo ruído para obter desempenho operacional eficiente. No ar, a energia média necessária para produzir um íon é de cerca de 34 eV; portanto, uma radiação de 1 MeV completamente absorvida no detector produz cerca de 3 x 10 4 pares de íons . No entanto, é um sinal pequeno, este sinal pode ser consideravelmente amplificado usando a eletrônica padrão. Uma corrente de 1 micro-ampère consiste em cerca de 10 12 elétrons por segundo.
  • Baixa densidade . Os raios gama depositam uma quantidade significativamente menor de energia no detector do que outras partículas. A eficiência da câmara pode ser aumentada ainda mais pelo uso de um gás de alta pressão.

Para que as partículas alfa e beta sejam detectadas pelas câmaras de ionização, elas devem ter uma janela fina . Essa “janela final” deve ser fina o suficiente para que as partículas alfa e beta penetrem. No entanto, uma janela de quase qualquer espessura impedirá que uma partícula alfa entre na câmara. A janela é geralmente feita de mica com uma densidade de cerca de 1,5 – 2,0 mg / cm 2 .

Região de ionização

Detectores de ionização gasosa - Regiões
Este diagrama mostra o número de pares de íons gerados no detector a gás, que varia de acordo com a tensão aplicada à radiação incidente constante. As tensões podem variar amplamente, dependendo da geometria do detector e do tipo e pressão do gás. Esta figura indica esquematicamente as diferentes regiões de tensão dos raios alfa, beta e gama. Existem seis principais regiões operacionais práticas, nas quais três (região de ionização, proporcional e Geiger-Mueller) são úteis para detectar radiação ionizante. As partículas alfa são mais ionizantes que as partículas beta e os raios gama; portanto, mais corrente é produzida na região da câmara de íons por alfa do que beta e gama, mas as partículas não podem ser diferenciadas. Mais corrente é produzida na região de contagem proporcional por partículas alfa que beta, mas, pela natureza da contagem proporcional, é possível diferenciar pulsos alfa, beta e gama. Na região de Geiger, não há diferenciação de alfa e beta, pois qualquer evento de ionização isolado no gás resulta na mesma saída de corrente.

Na região de ionização, um aumento na voltagem não causa um aumento substancial no número de pares de íons coletados. O número de pares de íons coletados pelos eletrodos é igual ao número de pares de íons produzidos pela radiação incidente e depende do tipo e energia das partículas ou raios na radiação incidente. Portanto, nesta região a curva é plana. A tensão deve ser maior que o ponto em que pares de íons dissociados podem se recombinar. Por outro lado, a tensão não é alta o suficiente para produzir amplificação de gás (ionização secundária). Os detectores na região de ionização operam com uma força de campo elétrico baixa, selecionada de forma que não ocorra multiplicação de gás . Sua corrente é independente da tensão aplicada e sãopreferidos para altas taxas de dose de radiação porque não possuem “tempo morto”, um fenômeno que afeta a precisão do tubo Geiger-Mueller em altas taxas de dose.

 

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.