O que é radioatividade – decaimento nuclear – definição

Em geral, a radioatividade (também conhecida como decaimento nuclear ou decaimento radioativo) é um processo aleatório no nível de átomos únicos. A radioatividade ocorre quando um átomo instável perde energia emitindo radiação ionizante. Dosimetria de Radiação

Natureza da radioatividade

O bário-137m é um produto de um produto de fissão comum - césio - 137. O principal raio gama do bário-137m é o fóton de 661keV.
O bário-137m é um produto de um produto de fissão comum – césio – 137. O principal raio gama do bário-137m é o fóton de 661keV.

Como foi escrito, os núcleos atômicos consistem em prótons e nêutrons, que se atraem através da força nuclear , enquanto os prótons se repelem através da força eletromagnética devido à sua carga positiva. Essas duas forças competem, levando a várias estabilidade dos núcleos. Existem apenas certas combinações de nêutrons e prótons, que formam núcleos estáveis . Os nêutrons estabilizam o núcleo , porque se atraem e prótons, o que ajuda a compensar a repulsão elétrica entre os prótons. Como resultado, à medida que o número de prótons aumenta, é necessária uma proporção crescente de nêutrons para prótons para formar um núcleo estável. Se houver muitos (os nêutrons também obedecem ao princípio de exclusão de Pauli ) ou poucos nêutrons para um determinado número de prótons, o núcleo resultante não é estável e sofre decaimento radioativo . A maioria dos átomos encontrados na natureza é estável e não emite partículas ou energia que mudam de forma ao longo do tempo. Dos 82 primeiros elementos da tabela periódica, 80 têm isótopos considerados estáveis. O tecnécio, o promécio e todos os elementos com um número atômico acima de 82 são instáveis ​​e se decompõem por meio de decomposição radioativa. Isótopos instáveis decaem espontaneamente através de várias vias de decaimento radioativo , mais comumente decaimento alfa, decaimento beta, decaimento gama ou captura de elétrons. Muitos outros tipos raros de deterioração, como fissão espontânea ou emissão de nêutrons, são conhecidos.

Modos de Decaimento

O decaimento nuclear (decaimento radioativo) ocorre quando um átomo instável perde energia emitindo radiação ionizante . O decaimento radioativo é um processo aleatório no nível de átomos únicos, pois, segundo a teoria quântica, é impossível prever quando um átomo em particular decairá. Em outras palavras, um núcleo de um radionuclídeo não tem “memória”. Um núcleo não “envelhece” com o passar do tempo. Assim, a probabilidade de quebra não aumenta com o tempo, mas permanece constante, não importa quanto tempo o núcleo exista. Durante sua imprevisível decadência, esse núcleo instável decompõe-se espontaneamente e aleatoriamenteformar um núcleo diferente (ou um estado de energia diferente – decaimento gama), emitindo radiação na forma de partículas atômicas ou raios de alta energia. Esse decaimento ocorre a uma taxa constante e previsível, denominada meia-vida. Um núcleo estável não sofrerá esse tipo de decaimento e, portanto, não será radioativo. Existem muitos modos de decaimento radioativo:

  • Notação de reações nucleares - decaimentos radioativos
    Notação de reações nucleares – decaimentos radioativos
    Fonte: chemwiki.ucdavis.edu

    Radioatividade alfa . Decaimento alfa é a emissão de partículas alfa (núcleos de hélio). As partículas alfa consistem em dois prótons e dois nêutrons unidos em uma partícula idêntica a um núcleo de hélio. Devido à sua massa muito grande (mais de 7000 vezes a massa da partícula beta) e à sua carga, ela ioniza material pesado e tem um alcance muito curto .

  • Radioatividade beta . O decaimento beta é a emissão de partículas beta . As partículas beta são elétrons ou pósitrons de alta energia e alta velocidade emitidos por certos tipos de núcleos radioativos, como o potássio-40. As partículas beta têm maior alcance de penetração do que as partículas alfa, mas ainda muito menos que os raios gama. As partículas beta emitidas são uma forma de radiação ionizante, também conhecida como raios beta. A produção de partículas beta é denominada decaimento beta.
  • Radioatividade gama . A radioatividade gama consiste em raios gama. Os raios gama são radiação eletromagnética (fótons de alta energia) de frequência muito alta e de alta energia. Eles são produzidos pela decadência dos núcleos à medida que passam de um estado de alta energia para um estado inferior, conhecido como decaimento gama. A maioria das reações nucleares é acompanhada por emissão gama.
  • Emissão de nêutrons . A emissão de nêutrons é um tipo de decaimento radioativo de núcleos contendo excesso de nêutrons (especialmente produtos de fissão), nos quais um nêutron é simplesmente ejetado do núcleo. Esse tipo de radiação desempenha papel fundamental no controle do reator nuclear , porque esses nêutrons são nêutrons atrasados .

Leis de Conservação em Decaimento Nuclear

Ao analisar as reações nucleares , aplicamos as muitas leis de conservação . As reações nucleares estão sujeitas às leis clássicas de conservação de carga, momento, momento angular e energia (incluindo energias de repouso). Leis de conservação adicionais, não previstas pela física clássica, são:

Certas leis são obedecidas em todas as circunstâncias, outras não. Aceitamos a conservação de energia e momento. Em todos os exemplos dados, assumimos que o número de prótons e o número de nêutrons são conservados separadamente. Encontraremos circunstâncias e condições nas quais essa regra não é verdadeira. Onde estamos considerando reações nucleares não relativísticas, é essencialmente verdade. No entanto, quando estivermos considerando energias nucleares relativísticas ou aquelas que envolvem interações fracas, descobriremos que esses princípios devem ser estendidos.

Alguns princípios de conservação surgiram de considerações teóricas, outros são apenas relações empíricas. Não obstante, qualquer reação que não seja expressamente proibida pelas leis de conservação geralmente ocorrerá, se talvez a um ritmo lento. Essa expectativa é baseada na mecânica quântica. A menos que a barreira entre os estados inicial e final seja infinitamente alta, sempre há uma probabilidade diferente de zero de que um sistema faça a transição entre eles.

Para fins de análise de reações não relativísticas, basta observar quatro das leis fundamentais que governam essas reações.

  1. Conservação de núcleons . O número total de núcleons antes e depois de uma reação é o mesmo.
  2. Conservação de carga . A soma das cargas em todas as partículas antes e depois de uma reação é a mesma
  3. Conservação do momento . O momento total das partículas que interagem antes e depois de uma reação é o mesmo.
  4. Conservação de energia . A energia, incluindo a energia restante da massa, é conservada em reações nucleares.

Referência: Lamarsh, John R. Introdução à engenharia nuclear 2ª edição

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.