Facebook Instagram Youtube Twitter

O que é o princípio de operação dos detectores HPGe – Definição

Detector HPGe – Princípio de operação. A operação dos detectores de semicondutores é resumida nos seguintes pontos: A radiação ionizante entra no volume sensível… Dosimetria de radiação
Detector HPGe - Germânio
Detector HPGe com criostato LN2 Fonte: canberra.com

Detectores de germânio de alta pureza ( detectores HPGe ) são a melhor solução para espectroscopia precisa de raios gama e raios-x . Em comparação com os detectores de silício , o germânio é muito mais eficiente do que o silício para a detecção de radiação devido ao seu número atômico ser muito maior que o silício e à menor energia média necessária para criar um par de elétrons-orifícios , que é 3,6 eV para silício e 2,9 eV para germânio. Devido ao seu número atômico mais alto, o Ge possui um coeficiente de atenuação linear muito maior, o que leva a um caminho livre médio mais curto. Além disso, os detectores de silício não podem ser mais grossos do que alguns milímetros, enquanto o germânio pode ter um esgotamento,espessura sensível de centímetros e, portanto, pode ser usado como um detector de absorção total para raios gama de até poucos MeV.

Para obter a máxima eficiência, os detectores de HPGe devem operar a temperaturas muito baixas de nitrogênio líquido (-196 ° C), porque, à temperatura ambiente, o ruído causado pela excitação térmica é muito alto.

Detector HPGe – Princípio de operação

A operação dos detectores de semicondutores é resumida nos seguintes pontos:

  • A radiação ionizante entra no volume sensível ( cristal de germânio ) do detector e interage com o material semicondutor.
  • O fóton de alta energia que passa pelo detector ioniza os átomos do semicondutor, produzindo os pares elétron-buraco . O número de pares elétron-buraco é proporcional à energia da radiação para o semicondutor. Como resultado, um número de elétrons é transferido da banda de valência para a banda de condução e um número igual de orifícios é criado na banda de valência.
  • Como o germânio pode ter uma espessura sensível e esgotada de centímetros, eles são capazes de absorver totalmente os fótons de alta energia  (até alguns MeV).
  • Sob a influência de um campo elétrico, elétrons e buracos viajam para os eletrodos, onde resultam em um pulso que pode ser medido em um circuito externo.
  • Esse pulso carrega informações sobre a energia da radiação incidente original. O número desses pulsos por unidade de tempo também fornece informações sobre a intensidade da radiação.

Em todos os casos, um fóton deposita uma parte de sua energia ao longo do caminho e pode ser absorvido totalmente. A absorção total de um fóton de 1 MeV produz cerca de 3 x 10 5 pares de furos de elétrons. Este valor é menor em comparação com o número total de portadores livres em de 1 cm semicondutor intrínseco . As partículas que passam pelo detector ionizam os átomos do semicondutor, produzindo os pares elétron-buraco. Mas em detectores à base de germânio à temperatura ambiente, a excitação térmica é dominante. É causada por impurezas, irregularidades na estrutura ou dopante . Depende fortemente da diferença E(uma distância entre a valência e a banda de condução), que é muito baixa para o germânio (Egap = 0,67 eV). Como a excitação térmica resulta no ruído do detector, é necessário um resfriamento ativo para alguns tipos de semicondutores (por exemplo, germânio).

Germânio - semicondutorObserve que uma amostra de 1 cm 3 de germânio puro a 20 ° C contém cerca de 4,2 × 10 22 átomos, mas também contém cerca de 2,5 x 10 13 elétrons livres e 2,5 x 10 13 orifícios gerados constantemente a partir da energia térmica. Como pode ser visto, a relação sinal-ruído (S / N) seria mínima (comparar com 3 x 10 5 pares de electrão-lacuna). A adição de 0,001% de arsênico (uma impureza) doa um extra de 10 17elétrons livres no mesmo volume e a condutividade elétrica é aumentada em um fator de 10.000. No material dopado, a relação sinal / ruído (S / N) seria ainda menor. Como o germânio possui um intervalo de banda relativamente baixo, esses detectores devem ser resfriados para reduzir a geração térmica de portadores de carga (portanto, reverter a corrente de fuga) para um nível aceitável. Caso contrário, o ruído induzido pela corrente de fuga destrói a resolução de energia do detector.

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.