Facebook Instagram Youtube Twitter

O que é o contador de cintilação NaI (Tl) – Definição

Um contador de cintilação NaI (Tl) é um detector de radiação que utiliza o efeito conhecido como cintilação. Nesse caso, a cintilação ocorre no cristal NaI (Tl). Dosimetria de Radiação
Scintillation_Counter - Tubo Fotomultiplicador
Aparelho com cristal cintilante, fotomultiplicador e componentes de aquisição de dados. Fonte: wikipedia.org Licença CC BY-SA 3.0

Um contador de cintilação NaI (Tl)  é um detector de radiação que utiliza o efeito conhecido como cintilação . A cintilação, que ocorre no  cristal NaI (Tl), é um flash de luz produzido em um material transparente pela passagem de uma partícula (um elétron, uma partícula alfa, um íon ou um fóton de alta energia). A cintilação ocorre no cintilador, que é uma parte essencial de um detector de cintilação. Em geral, um detector de cintilação consiste em:

  • Cintilador . Um cintilador gera fótons em resposta à radiação incidente.
  • Fotodetector . Um fotodetector sensível (geralmente um tubo fotomultiplicador (PMT), uma câmera de dispositivo acoplado a carga (CCD) ou um fotodiodo), que converte a luz em um sinal elétrico e eletrônico para processar esse sinal.

O princípio básico de operação envolve a reação da radiação com um cintilador, que produz uma série de flashes de intensidade variável. A intensidade dos flashes é proporcional à energia da radiação. Esse recurso é muito importante. Esses contadores são adequados para medir a energia da radiação gama ( espectroscopia gama ) e, portanto, podem ser usados ​​para identificar isótopos emissores gama.

Os contadores de cintilação são amplamente utilizados em proteção contra radiação , ensaio de materiais radioativos e pesquisa em física porque podem ser feitos de maneira barata e com boa eficiência e podem medir a intensidade e a energia da radiação incidente. Hospitais em todo o mundo possuem câmeras gama baseadas no efeito de cintilação e, portanto, também são chamadas de câmeras de cintilação.

As vantagens de um contador de cintilação são sua eficiência e as altas taxas de precisão e contagem possíveis. Esses últimos atributos são uma conseqüência da duração extremamente curta dos flashes de luz, de cerca de 10 a 9  (cintiladores orgânicos) a 10 a 6 (cintiladores inorgânicos) segundos. A intensidade dos flashes e a amplitude do pulso da tensão de saída são proporcionais à energia da radiação . Portanto, os contadores de cintilação podem ser usados ​​para determinar a energia, bem como o número, das partículas excitantes (ou fótons gama). Para espectrometria gama, os detectores mais comuns incluem contadores de cintilação de iodeto de sódio (NaI) e detectores de germânio de alta pureza.

Cintiladores de iodeto de sódio dopado com tálio – NaI (Tl)

O material de cintilação mais utilizado é o NaI (Tl) (iodeto de sódio dopado com tálio) . NaI (Tl) como cintilador é usado em detectores de cintilação, tradicionalmente em medicina nuclear, geofísica, física nuclear e medições ambientais. O iodo fornece a maior parte do poder de parada do iodeto de sódio (já que possui um alto Z = 53). Esses cintiladores cristalinos são caracterizados por tempos de alta densidade, alto número atômico e decaimento de pulso de aproximadamente 1 microssegundo (~ 10 a 6 segundos). O comprimento de onda da emissão máxima é de 415 nm. A cintilação em cristais inorgânicos é tipicamente mais lenta que nos orgânicos. Eles exibem alta eficiência na detecção de raios gama e são capazes de lidar com altas taxas de contagem. Os cristais inorgânicos podem ser cortados em tamanhos pequenos e dispostos em uma configuração de matriz para fornecer sensibilidade à posição. Esse recurso é amplamente utilizado em imagens médicas para detectar raios-X ou raios gama. Cintiladores inorgânicos são melhores na detecção de raios gama e raios-X. O cintilador NaI (Tl) tem uma resolução de energia mais alta que um contador proporcional, permitindo determinações de energia mais precisas. Isto é devido à sua alta densidade e número atômico, o que fornece uma alta densidade de elétrons. Uma desvantagem de alguns cristais inorgânicos, por exemplo, NaI, é a higroscopicidade, uma propriedade que exige que eles sejam alojados em um recipiente hermético para protegê-los da umidade. Os cristais são geralmente acoplados a um tubo fotomultiplicador, em um conjunto hermeticamente fechado.

Tubo fotomultiplicador

Os tubos fotomultiplicadores (PMTs) são um dispositivo de detecção de fótons que usa o efeito fotoelétrico combinado com a emissão secundária para converter luz em um sinal elétrico. Um fotomultiplicador absorve a luz emitida pelo cintilador e a reemite na forma de elétrons pelo efeito fotoelétrico . O PMT tem sido a principal escolha para detecção de fótons desde então, devido ao fato de terem alta eficiência quântica e alta amplificação.

Componentes do tubo fotomultiplicador

O dispositivo consiste em vários componentes e esses componentes são mostrados na figura.

  • Photocathode . Logo após uma fina janela de entrada, existe um fotocátodo, feito de material no qual os elétrons de valência estão fracamente ligados e têm uma seção transversal alta para converter fótons em elétrons pelo efeito fotoelétrico. Por exemplo, Cs 3 Sb (césio-antimônio) pode ser usado. Como resultado, a luz criada no cintilador atinge o fotocatodo de um tubo fotomultiplicador, liberando no máximo um fotoelétron por fóton.
  • Dínodos . Usando um potencial de voltagem, esse grupo de elétrons primários é eletrostaticamente acelerado e focado para atingir o primeiro dínodo com energia suficiente para liberar elétrons adicionais. Há uma série (“estágios”) de dínodos feitos de material com função de trabalho relativamente baixa. Esses eletrodos são operados com potencial cada vez maior (por exemplo, ~ 100-200 V entre dínodos). No dínodo, os elétrons são multiplicados por emissão secundária. O próximo dínodo tem uma voltagem mais alta, o que faz com que os elétrons liberados do primeiro acelerem em sua direção. Em cada dínodo 3-4 electrões são introduzidas em cada electrões incidente, e com 6 a 14 dínodos o ganho total, ou do factor de amplificação de electrões, será na gama de ~ 10 4 -107 quando atingem o ânodo. As tensões operacionais típicas estão na faixa de 500 a 3000 V. No dínodo final, elétrons suficientes estão disponíveis para produzir um pulso de magnitude suficiente para amplificação adicional. Esse pulso carrega informações sobre a energia da radiação incidente original. O número desses pulsos por unidade de tempo também fornece informações sobre a intensidade da radiação.

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.