O que é a região operacional de detectores ionizantes – Voltagem do detector – Definição

Existem seis principais regiões operacionais práticas, onde três (ionização, proporcional e região de Geiger-Mueller) são úteis para detectar radiação ionizante. Dosimetria de Radiação
Detector de radiação ionizante - Tubo Geiger
Detector de radiação ionizante – Tubo Geiger

A relação entre a tensão aplicada e a altura do pulso em um detector é muito complexa. A altura do pulso e o número de pares de íons coletados estão diretamente relacionados. Como foi escrito, as tensões podem variar amplamente, dependendo da geometria do detector e do tipo e pressão do gás. A figura indica esquematicamente as diferentes regiões de tensão dos raios alfa, beta e gama. Existem seis principais regiões operacionais práticas, onde três (ionização, proporcional e região de Geiger-Mueller) são úteis para detectar radiação ionizante. Essas regiões são mostradas abaixo. A curva alfa é mais alta que a curva beta e gama da região de recombinação para parte da região de proporcionalidade limitada devido ao maior número de pares de íons produzidos pela reação inicial da radiação incidente.

Detectores de ionização gasosa - Regiões
Este diagrama mostra o número de pares de íons gerados no detector a gás, que varia de acordo com a tensão aplicada à radiação incidente constante. As tensões podem variar amplamente, dependendo da geometria do detector e do tipo e pressão do gás. Esta figura indica esquematicamente as diferentes regiões de tensão dos raios alfa, beta e gama. Existem seis principais regiões operacionais práticas, onde três (ionização, região proporcional e Geiger-Mueller) são úteis para detectar radiação ionizante. As partículas alfa são mais ionizantes que as beta e os raios gama; portanto, mais corrente é produzida na região da câmara de íons pelo alfa do que beta e gama, mas as partículas não podem ser diferenciadas. Mais corrente é produzida na região de contagem proporcional por partículas alfa que beta, mas, pela natureza da contagem proporcional, é possível diferenciar os pulsos alfa, beta e gama. Na região de Geiger, não há diferenciação de alfa e beta, pois qualquer evento de ionização isolado no gás resulta na mesma saída de corrente.
  • Região de Recombinação. Em baixa tensão, o campo elétrico não é grande o suficiente para acelerar elétrons e íons. Os elétrons e os íons podem se recombinar logo após serem produzidos, e apenas uma pequena fração dos elétrons e dos íons produzidos atinge seus respectivos eletrodos. À medida que a tensão do detector aumenta, no entanto, uma fração cada vez maior dos íons produzidos atinge os eletrodos. Este aumento continua até que a tensão de “saturação” seja atingida. A faixa de tensão operacional em que isso ocorre é chamada de região de recombinação . Os detectores não são operados nesta região, porque nem o número de recombinações nem o número de pares de íons produzidos inicialmente podem ser determinados com precisão.
  • Região de ionização . Na região de ionização, um aumento na voltagem não causa um aumento substancial no número de pares de íons coletados. O número de pares de íons coletados pelos eletrodos é igual ao número de pares de íons produzidos pela radiação incidente e depende do tipo e energia das partículas ou raios na radiação incidente. Portanto, nesta região a curva é plana. A tensão deve ser maior que o ponto em que pares de íons dissociados podem se recombinar. Por outro lado, a tensão não é alta o suficiente para produzir amplificação de gás (ionização secundária). Os detectores na região de ionização operam com uma força de campo elétrico baixa, selecionada de forma que não ocorra multiplicação de gás . Sua corrente é independente da tensão aplicada e sãopreferidos para altas taxas de dose de radiação porque não possuem “tempo morto”, um fenômeno que afeta a precisão do tubo Geiger-Mueller em altas taxas de dose.
  • A geração de avalanches discretas de Townsend em um contador proporcional. Fonte: wikpedia.org Licença: CC BY-SA 3.0

    Região proporcional . Na região proporcional, a carga coletada aumenta com um aumento adicional na tensão do detector, enquanto o número de pares de íons primários permanece inalterado. O aumento da tensão fornece aos elétrons primários aceleração e energia suficientes para que eles possam ionizar átomos adicionais do meio. Esses íons secundários formados também são acelerados, causando um efeito conhecido como avalanches de Townsend , que cria um único pulso elétrico grande. Embora exista um grande número de íons secundários (cerca de 10 3 – 10 5 ) para cada evento primário, a câmara é sempre operada de modo que o número de íons secundários seja proporcionalpara o número de eventos primários. É muito importante, porque a ionização primária depende do tipo e energia das partículas ou raios no campo de radiação interceptado. O número de pares de íons coletados dividido pelo número de pares de íons produzidos pela ionização primária fornece o fator de amplificação do gás (indicado por A). A amplificação de gás que ocorre nessa região pode aumentar a quantidade total de ionização para um valor mensurável. O processo de amplificação de carga melhora muito a relação sinal-ruído do detector e reduz a amplificação eletrônica subsequente necessária. Quando os instrumentos são operados na região proporcional, a tensão deve ser mantida constante.Se uma tensão permanecer constante, o fator de amplificação do gás também não muda. Os instrumentos proporcionais de detecção de contadores são muito sensíveis a baixos níveis de radiação. Além disso, os contadores proporcionais são capazes de identificar partículas e medir energia (espectroscopia). Diferentes energias de radiação e diferentes tipos de radiação podem ser distinguidos através da análise da altura do pulso, uma vez que diferem significativamente na ionização primária.

  • Região proporcional limitada . Na região proporcional limitada, o fator de amplificação do gás não continua aumentando proporcionalmente à tensão. Ionizações adicionais e efeitos não lineares causam que não haja proporcionalidade do sinal de saída para a energia depositada em uma dada tensão aplicada. O campo elétrico na câmara está distorcido devido à alta concentração de íons positivos. Os elétrons livres são muito mais leves que os íons positivos; portanto, eles são atraídos para o eletrodo central positivo muito mais rapidamente do que os íons positivos são atraídos para a parede da câmara. A nuvem resultante de íons positivos próximos ao eletrodo leva a distorções na multiplicação de gases. Esta região é geralmente evitada como uma região de detecção.
  • Visualização da propagação de avalanches de Townsend por meio de fótons UV. Fonte: wikpedia.org Licença: CC BY-SA 3.0

    Região Geiger-Mueller . Na região de Geiger-Mueller, a tensão e, portanto, o campo elétrico são tão fortes que podem ocorrer avalanches secundárias. Essas avalanches podem ser desencadeadas e propagadas por fótons emitidos por átomos excitados na avalanche original. Como esses fótons não são afetados pelo campo elétrico, eles podem interagir longe (por exemplo, lateralmente ao eixo) da avalanche primária, todo o tubo Geiger está participando do processo. Um sinal forte (o fator de amplificação pode atingir cerca de 10 10) é produzido por essas avalanches com forma e altura, independentemente da ionização primária e da energia do fóton detectado. Os detectores, que são operados na região de Geiger-Mueller, são capazes de detectar raios gama e também de todos os tipos de partículas carregadas que podem entrar no detector. Esses detectores são conhecidos como contadores Geiger . A principal vantagem desses instrumentos é que eles geralmente não requerem nenhum amplificador de sinal. Como os íons positivos não se afastam da região da avalanche, uma nuvem de íons carregada positivamente perturba o campo elétrico e encerra o processo da avalanche. Na prática, o término da avalanche é melhorado pelo uso de “ extinção”Técnicas. Ao contrário dos contadores proporcionais, a energia ou mesmo as partículas de radiação incidente não podem ser distinguidas pelos contadores Geiger, pois o sinal de saída é independente da quantidade e do tipo de ionização original.

  • Região de descarga . Finalmente, em tensões ainda mais altas (acima da região de Geiger-Mueller), o campo elétrico gera uma descarga contínua do meio, com a câmara não sendo mais sensível a qualquer ionização incidente. Esta região não é usada para detecção ou medição de radiação ionizante. Se a tensão do tubo Geiger for aumentada acima do final do platô, a taxa de contagem começará a aumentar rapidamente novamente, até o início da descarga contínua, onde o tubo não pode detectar radiação e pode ser danificado.

Tipos de detectores de radiação ionizante

Como resultado, existem três tipos básicos de detectores de ionização gasosa , que são classificados de acordo com a voltagem aplicada ao detector:

  • câmaras de ionização,
  • contadores proporcionais,
  • Tubos Geiger-Müller.

Como em outros detectores, as câmaras de ionização podem ser operadas no modo atual ou de pulso. Por outro lado, contadores proporcionais ou Geiger são quase sempre usados ​​no modo de pulso. Detectores de radiação ionizante podem ser usados ​​tanto para medições de atividade quanto para medições de dose. Com o conhecimento sobre a energia necessária para formar um par de íons – a dose pode ser obtida.

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.