Facebook Instagram Youtube Twitter

¿Qué es la dosimetría gamma? – Dosímetro gamma – Definición

La dosimetría gamma es la medición, el cálculo y la evaluación de las dosis absorbidas y la asignación de esas dosis a los individuos. Dosimetría de radiación

La dosimetría gamma  es la medición, el cálculo y la evaluación de las dosis absorbidas y la asignación de esas dosis a los individuos. Es la ciencia y la práctica que intenta relacionar cuantitativamente las medidas específicas realizadas en un campo de radiación con los cambios químicos y / o biológicos que la radiación produciría en un objetivo.

Dado que hay dos tipos de exposición a la radiación, la exposición externa e interna, la dosimetría también se puede clasificar como:

  • Dosimetría Externa . La exposición externa es la radiación que proviene del exterior de nuestro cuerpo e interactúa con nosotros. En este caso, analizamos predominantemente la exposición de  los rayos gamma  y las  partículas beta , ya que  las partículas alfa , en general, no constituyen un riesgo de exposición externa porque las partículas generalmente no pasan a través de la piel. Dado que los fotones y beta interactúan a través de fuerzas electromagnéticas y los neutrones interactúan a través de fuerzas nucleares, sus métodos de detección y dosimetría son sustancialmente diferentes. La fuente de radiación puede ser, por ejemplo, un equipo que produce la radiación como un recipiente con materiales radiactivos, o como una máquina de rayos X. La dosimetría externa se basa en mediciones con un  dosímetro, o inferido de mediciones realizadas por otros instrumentos de protección radiológica.
  • Dosimetría interna . Si la fuente de radiación está  dentro de nuestro cuerpo , decimos que es  la exposición interna . La ingesta de material radiactivo puede ocurrir a través de varias vías, como la ingestión de contaminación radiactiva en alimentos o líquidos. La protección contra la exposición interna es más complicada. La mayoría de los radionucleidos le darán mucha más dosis de radiación si de alguna manera pueden ingresar a su cuerpo, de lo que lo harían si permanecieran afuera. La evaluación de dosimetría interna se basa en una variedad de técnicas de monitoreo, bioensayo o imágenes de radiación.

Los estudios han demostrado que la radiación alfa y de neutrones causa un daño biológico mayor para una deposición de energía dada por kg de tejido que la radiación gamma. Se descubrió que los efectos biológicos de cualquier radiación  aumentan  con la  transferencia de energía lineal  (LET). En resumen, el daño biológico de la radiación de  alto LET  ( partículas alfa ,  protones  o  neutrones ) es mucho mayor que el de la radiación de  bajo LET  ( rayos gamma) Esto se debe a que el tejido vivo puede reparar más fácilmente el daño de la radiación que se extiende sobre un área grande que la que se concentra en un área pequeña. Como se causa más daño biológico por la misma dosis física (es decir, la misma energía depositada por unidad de masa de tejido), un gray de radiación alfa o de neutrones es más dañino que un gray de radiación gamma. Este hecho de que las radiaciones de diferentes tipos (y energías) dan diferentes efectos biológicos para la misma dosis absorbida se describe en términos de factores conocidos como la  efectividad biológica relativa  (RBE) y el factor de ponderación de la  radiación  (w R ).

Factores de ponderación de la radiación – ICRP

Para la radiación de fotones y electrones, el factor de ponderación de la  radiación tiene el valor 1 independientemente de la energía de la radiación y para la radiación alfa el valor 20. Para la radiación de neutrones, el valor depende de la energía y es de 5 a 20.

Factores de ponderación de la radiación
Fuente: ICRP, 2003. Efectividad biológica relativa (RBE), factor de calidad (Q) y factor de ponderación de la radiación (wR). Publicación ICRP 92. Ann. ICRP 33 (4).

En 2007, ICRP publicó un  nuevo conjunto de factores de ponderación de la radiación (Publicación ICRP 103: Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica). Estos factores se dan a continuación.

Factores de ponderación de la radiación - actual - ICRP
Fuente: ICRP Publ. 103: Las Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica

 

Como se muestra en la tabla, aw R  de 1 es para todas las radiaciones de baja LET, es decir, rayos X y rayos gamma de todas las energías, así como electrones y muones. Una curva suave, considerada una aproximación, se ajustó a los valores de w R en función de la energía de neutrones incidente. Tenga en cuenta que E n  es la energía de neutrones en MeV.

factor de ponderación de la radiación - neutrones - ICRP
El factor de ponderación de radiación wR para neutrones introducido en la Publicación 60 (ICRP, 1991) como una función discontinua de la energía de neutrones (- – -) y la modificación propuesta (-).

Así, por ejemplo, una dosis absorbida de 1 Gy por partículas alfa conducirá a una dosis equivalente de 20 Sv, y ​​se estima que una dosis equivalente de radiación tiene el mismo efecto biológico que una cantidad igual de dosis absorbida de rayos gamma, que es dado un factor de ponderación de 1.

Detectores de radiación gamma

Los detectores también se pueden clasificar de acuerdo con materiales y métodos sensibles que se pueden utilizar para realizar una medición:

Detección de radiación gamma utilizando la cámara de ionización

cámara de ionización - principio básico

Los rayos gamma  tienen muy pocos problemas para penetrar las paredes metálicas de la cámara. Por lo tanto, las cámaras de ionización pueden usarse para detectar radiación gamma y rayos X colectivamente conocidos como fotones, y para esto se usa el tubo sin ventanas. Las cámaras de ionización tienen una buena respuesta uniforme a la radiación en una amplia gama de energías y son los medios preferidos para medir altos niveles de radiación gamma. Algunos problemas son causados ​​por el hecho de que las partículas alfa son más ionizantes que las partículas beta y que los rayos gamma, por lo que alfa produce más corriente en la región de la cámara de ionización que beta y gamma. Los rayos gamma depositan una cantidad de energía significativamente menor en el detector que otras partículas.

La eficiencia de la cámara se puede aumentar aún más mediante el uso de un gas a alta presión. Típicamente, se puede usar una presión de 8-10 atmósferas, y se emplean varios gases nobles. Por ejemplo,  las cámaras de ionización de xenón de alta presión (HPXe)  son ideales para usar en entornos no controlados, ya que se ha demostrado que la respuesta del detector es uniforme en grandes rangos de temperatura (20-170 ° C). La presión más alta da como resultado una mayor densidad de gas y, por lo tanto, una mayor posibilidad de colisión con el gas de relleno y la creación de pares de iones por la radiación gamma incidente. Debido al aumento del grosor de la pared requerido para soportar esta alta presión, solo se puede detectar la radiación gamma. Estos detectores se utilizan en  medidores topográficos  y para monitoreo ambiental.

Detección de radiación gamma utilizando el contador Geiger

Detector de radiación ionizante - Tubo Geiger
Detector de radiación ionizante – Tubo Geiger

El contador Geiger  puede detectar radiaciones ionizantes como  partículas alfa  y  beta ,  neutrones y  rayos gamma  utilizando el efecto de ionización producido en un tubo Geiger-Müller, que da nombre al instrumento. El voltaje del detector se ajusta de modo que las condiciones correspondan a la  región Geiger-Mueller .

El  alto factor de amplificación  del contador Geiger es la principal ventaja sobre la cámara de ionización. El contador Geiger es, por lo tanto, un dispositivo mucho más sensible que otras cámaras. A menudo se usa en la detección de rayos gamma de bajo nivel y partículas beta por este motivo.

 

Detección de radiación gamma utilizando el contador de centelleo

 

Scintillation_Counter - Tubo fotomultiplicador
Aparato con un cristal centelleante, fotomultiplicador y componentes de adquisición de datos. Fuente: wikipedia.org Licencia CC BY-SA 3.0

Los contadores de centelleo  se utilizan para medir la radiación en una variedad de aplicaciones que incluyen medidores de medición de radiación de mano, monitoreo personal y ambiental de  contaminación radiactiva , imágenes médicas, ensayos radiométricos, seguridad nuclear y seguridad de plantas nucleares. Son ampliamente utilizados porque pueden fabricarse de manera económica pero con buena eficiencia, y pueden medir tanto la intensidad como la energía de la radiación incidente.

Los contadores de centelleo se pueden usar para detectar  la radiación alfa ,  beta y  gamma . Se pueden usar también para la  detección de neutrones . Para estos fines, se utilizan diferentes centelleadores.

  • Rayos Gamma . Los materiales High-Z  son los más adecuados como centelleadores para la detección de rayos gamma. El material de centelleo más utilizado es  NaI (Tl)  (yoduro de sodio dopado con talio). El yodo proporciona la mayor parte del poder de detención en el yoduro de sodio (ya que tiene un alto Z = 53). Estos centelleadores cristalinos se caracterizan por una alta densidad, un alto número atómico y tiempos de caída de pulso de aproximadamente 1 microsegundo (~ 10 -6 segundo). El centelleo en cristales inorgánicos es típicamente más lento que en los orgánicos. Exhiben una alta eficiencia para la detección de rayos gamma y son capaces de manejar altas tasas de conteo. Los cristales inorgánicos se pueden cortar a tamaños pequeños y disponer en una configuración de matriz para proporcionar sensibilidad de posición. Esta característica es ampliamente utilizada en imágenes médicas para detectar rayos X o rayos gamma. Los centelleadores inorgánicos son mejores para detectar rayos gamma y rayos X. Esto se debe a su alta densidad y número atómico que da una alta densidad de electrones.

Detección de radiación gamma utilizando semiconductores – Detectores HPGe

Detector HPGe - Germanio
Detector HPGe con criostato LN2 Fuente: canberra.com

Detectores de germanio de alta pureza  ( detectores de HPGe ) son la mejor solución para precisa  gamma y espectroscopia de rayos x .

Como se escribió, el estudio y análisis de los espectros de rayos gamma para uso científico y técnico se llama espectroscopía gamma, y ​​los espectrómetros de rayos gamma son los instrumentos que observan y recopilan dichos datos. Un espectrómetro de rayos gamma (GRS) es un dispositivo sofisticado para medir la distribución de energía de la radiación gamma. Para la medición de rayos gamma por encima de varios cientos de keV, hay dos categorías de detectores de gran importancia,  centelleadores inorgánicos como NaI (Tl)  y  detectores de semiconductores . Si  se requiere una  resolución energética perfecta , tenemos que usar  un detector a base de germanio , como el  detector HPGe. Detectores semiconductores a base de germanio son los más utilizados cuando se requiere una muy buena resolución en energía, especialmente para  espectroscopia gamma , así como  espectroscopia de rayos x . En la espectroscopía gamma, se prefiere el germanio debido a que su número atómico es mucho más alto que el silicio y que aumenta la probabilidad de interacción con los rayos gamma. Además, el germanio tiene una energía promedio menor necesaria para crear un par de electrones, que es 3.6 eV para silicio y 2.9 eV para germanio. Esto también proporciona a este último una mejor resolución en energía. El FWHM (ancho completo a la mitad como máximo) para los detectores de germanio es una función de la energía. Para un fotón de 1.3 MeV, el FWHM es 2.1 keV, que es muy bajo.

EPD – Dosímetro personal electrónico

EPD - Dosímetros personales electrónicos
EPD – Dosímetros personales electrónicos con chip Si

Un  dosímetro personal electrónico  es un dosímetro moderno, que puede proporcionar una lectura continua de la  dosis acumulada  y  la tasa de dosis actual , y puede advertir a la persona que lo usa cuando   se excede  una tasa de dosis específica o una  dosis acumulada . Las EPD son especialmente útiles en áreas de dosis altas donde el tiempo de residencia del usuario es limitado debido a restricciones de dosis.

Características de las EPD

El  dosímetro personal electrónico, EPD,  puede mostrar una  lectura directa  de la dosis detectada o la tasa de dosis en tiempo real. Los dosímetros electrónicos pueden usarse como dosímetro suplementario y también como dosímetro primario. Los dosímetros pasivos y los dosímetros personales electrónicos a menudo se usan juntos para complementarse entre sí. Para estimar las dosis efectivas, los dosímetros deben usarse en una posición del cuerpo representativa de su exposición, típicamente entre la cintura y el cuello, en la parte delantera del torso, frente a la fuente radiactiva. Los dosímetros generalmente se usan en la parte exterior de la ropa, alrededor del pecho o el torso para representar la dosis para «todo el cuerpo». También se pueden usar dosímetros en las extremidades o cerca del ojo para medir una dosis equivalente a estos tejidos.

El dosímetro se puede restablecer, generalmente después de tomar una lectura con fines de registro, y por lo tanto reutilizarse varias veces. Las EPD tienen una pantalla montada en la parte superior para que sean fáciles de leer cuando están enganchadas en el bolsillo del pecho. La pantalla digital proporciona información sobre la  dosis  y la  tasa de dosis, generalmente en mSv y mSv / h. La EPD tiene una  alarma de tasa de dosis y una  alarma de dosis . Estas alarmas son programables. Se pueden configurar diferentes alarmas para diferentes actividades.

Por ejemplo:

  • alarma de tasa de dosis a 100 μSv / h,
  • alarma de dosis: 100 μSv.

Si se alcanza un punto de ajuste de alarma, la pantalla correspondiente parpadea junto con una luz roja y se genera un ruido penetrante. Puede borrar la alarma de tasa de dosis retirándose a un campo de radiación más bajo, pero no puede borrar la alarma de dosis hasta que llegue a un lector de EPD. Las EPD también pueden emitir un pitido por cada 1 o 10 μSv que registran. Esto le da una indicación audible de los campos de radiación. Algunas EPD tienen capacidades de comunicación inalámbrica. Las EPD son capaces de medir un amplio rango de dosis de radiación desde niveles de rutina (μSv) hasta niveles de emergencia (cientos de mSv o unidades de Sieverts) con alta precisión, y pueden mostrar la tasa de exposición y los valores de exposición acumulados. De las tecnologías de dosímetro, los dosímetros personales electrónicos son generalmente los más caros, los más grandes y los más versátiles.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.