Facebook Instagram Youtube Twitter

¿Qué es la dosis efectiva? Definición

En protección radiológica, la dosis efectiva es una cantidad de dosis definida como la suma de las dosis equivalentes de tejido ponderadas por los factores de ponderación de órganos (tejidos) ICRP, wT, que tiene en cuenta la sensibilidad variable de los diferentes órganos y tejidos a la radiación. Dosimetría de radiación

Absorbido - Equivalente - Dosis efectivaEn la protección radiológica, la dosis efectiva es una cantidad de dosis definida como la suma de las dosis equivalentes de tejido ponderadas por los factores de ponderación de órganos (tejidos) ICRP , T , que tiene en cuenta la sensibilidad variable de los diferentes órganos y tejidos a la radiación . La dosis efectiva se da el símbolo E . La unidad SI de E es el sievert (Sv) o aún se usa comúnmente rem (hombre equivalente a roentgen) ( 1 Sv = 100 rem ). La unidad de sievert lleva el nombre del científico sueco Rolf Sievert, que realizó muchos de los primeros trabajos sobre dosimetría en radioterapia.

Como se escribió en el capítulo anterior, la dosis equivalente , H T , se usa para evaluar  el riesgo de salud estocástico  debido a los campos de radiación externos que penetran  uniformemente  en todo el cuerpo. Sin embargo, necesita más  correcciones  cuando el campo se aplica solo a parte (s) del cuerpo, o de manera  no uniforme  para medir el riesgo de salud estocástico general para el cuerpo. Para habilitar esto, una cantidad de dosis adicional llamada  dosis efectiva debe ser usado. La dosis efectiva permite determinar las consecuencias biológicas de la irradiación parcial (no uniforme). Es debido al hecho de que varios tejidos corporales reaccionan a la radiación ionizante de diferentes maneras. Por lo tanto, la ICRP ha asignado factores de sensibilidad a tejidos y órganos específicos para que se pueda calcular el efecto de la irradiación parcial si se conocen las regiones irradiadas.

En la Publicación 60, el ICRP definió la dosis efectiva como la suma doblemente ponderada de la dosis absorbida en todos los órganos y tejidos del cuerpo. Los límites de dosis se establecen en términos de dosis efectiva y se aplican al individuo con fines de protección radiológica, incluida la evaluación del riesgo en términos generales. Matemáticamente, la dosis efectiva se puede expresar como:

dosis efectiva - definición

dosis efectivaTanto la dosis equivalente como la dosis efectiva son cantidades para usar en la protección radiológica, incluida la evaluación de riesgos en términos generales. Proporcionan una base para estimar la probabilidad de efectos estocásticos solo para dosis absorbidas muy por debajo de los umbrales para efectos deterministas.

Unidades de dosis efectiva :

  • Sievert . El sievert es una unidad derivada de dosis equivalente y dosis efectiva y representa el efecto biológico equivalente del depósito de un joule de energía de rayos gamma en un kilogramo de tejido humano.
  • REM . El rem (una abreviatura de R oentgen E quivalent M an) es la unidad no SI de dosis equivalente y dosis efectiva, que se usa predominantemente en los EE. UU. Es un término para la equivalencia de dosis e iguala el daño biológico que sería causado por un rad de dosis.

Un sievert es una gran cantidad de dosis efectiva. Una persona que ha absorbido una dosis de 1 Sv en todo el cuerpo ha absorbido un julio de energía en cada kg de tejido corporal (en el caso de los rayos gamma).

Las dosis efectivas en la industria y la medicina a menudo tienen dosis más bajas que un sievert, y a menudo se usan los siguientes múltiplos:

1 mSv (millisievert) = 1E-3 Sv

1 µSv (microsievert) = 1E-6 Sv

Las conversiones de las unidades SI a otras unidades son las siguientes:

  • 1 Sv = 100 rem
  • 1 mSv = 100 mrem

Factores de ponderación de tejidos

El factor de ponderación de tejido, w T , es el factor por el cual la dosis equivalente en un tejido u órgano T se pondera para representar la contribución relativa de ese tejido u órgano al detrimento total de la salud resultante de la irradiación uniforme del cuerpo (ICRP 1991b) . Representa una medida del riesgo de efectos estocásticos que podrían resultar de la exposición de ese tejido específico. Los factores de ponderación de los tejidos tienen en cuenta la sensibilidad variable de los diferentes órganos y tejidos a la radiación.

dosis efectiva - factor de ponderación de tejido

Los factores de ponderación de los tejidos se enumeran en varias publicaciones de la ICRP (Comisión Internacional de Protección Radiológica). De acuerdo con la determinación real de la ICRP, los factores de riesgo se encuentran en la siguiente tabla (de la publicación 103 de la ICRP (ICRP 2007)).

factor de ponderación de tejidos - ICRP

Referencia especial: CIPR, 2007. Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica. Publicación 103 de la CIPR. Ann. ICRP 37 (2-4).

Para este fin, el cuerpo se ha dividido en 15 órganos diferentes – cada uno con un factor de ponderación w T . Si solo se irradia parte del cuerpo, entonces solo esas regiones se usan para calcular la dosis efectiva. Los factores de ponderación del tejido se suman a 1.0 , de modo que si un cuerpo entero se irradia con radiación externa que penetra de manera uniforme, la dosis efectiva para todo el cuerpo es igual a la dosis equivalente para todo el cuerpo.

suma - factores de ponderación de tejidos

Si una persona se irradia solo parcialmente, la dosis dependerá en gran medida del tejido que se irradió. Por ejemplo, una dosis gamma de 10 mSv para todo el cuerpo y una dosis de 50 mSv para la tiroides es lo mismo, en términos de riesgo, que una dosis para todo el cuerpo de 10 + 0.04 x 50 = 12 mSv.

Ejemplos de dosis en Sieverts

Debemos tener en cuenta que la radiación nos rodea. En, alrededor y sobre el mundo en que vivimos. Es una fuerza de energía natural que nos rodea. Es una parte de nuestro mundo natural que ha estado aquí desde el nacimiento de nuestro planeta. En los siguientes puntos tratamos de expresar enormes rangos de exposición a la radiación, que pueden obtenerse de varias fuentes.

  • 0.05 µSv – Dormir al lado de alguien
  • 0.09 µSv – Vivir dentro de 30 millas de una planta de energía nuclear por un año
  • 0.1 µSv – Comer una banana
  • 0.3 µSv – Vivir dentro de 50 millas de una central eléctrica de carbón durante un año
  • 10 µSv : dosis diaria promedio recibida del fondo natural
  • 20 µSv – Radiografía de tórax
  • 40 µSv : un vuelo en avión de 5 horas
  • 600 µSv – mamografía
  • 1000 µSv : límite de dosis para miembros individuales del público, dosis efectiva total por año
  • 3 650 µSv : dosis media anual recibida del fondo natural
  • 5 800 µSv : tomografía computarizada del tórax
  • 10 000 µSv : dosis media anual recibida de un entorno natural en Ramsar, Irán
  • 20 000 µSv – tomografía computarizada de cuerpo completo
  • 175 000 µSv – Dosis anual de radiación natural en una playa de monazita cerca de Guarapari, Brasil.
  • 5 000 000 µSv : dosis que mata a un ser humano con un riesgo del 50% en 30 días (LD50 / 30), si la dosis se recibe durante un período muy corto .

Como se puede ver, las dosis bajas son comunes en la vida cotidiana. Los ejemplos anteriores pueden ayudar a ilustrar las magnitudes relativas. Desde el punto de vista de las consecuencias biológicas, es muy importante distinguir entre las dosis recibidas durante períodos cortos y prolongados . Una » dosis aguda » es aquella que ocurre durante un período de tiempo corto y finito, mientras que una » dosis crónica«Es una dosis que continúa durante un período prolongado de tiempo para que se describa mejor mediante una tasa de dosis. Las dosis altas tienden a matar células, mientras que las dosis bajas tienden a dañarlas o cambiarlas. Las dosis bajas distribuidas durante largos períodos de tiempo no causan un problema inmediato a ningún órgano del cuerpo. Los efectos de bajas dosis de radiación ocurren a nivel celular y los resultados pueden no observarse durante muchos años.

Tasa de dosis efectiva

La tasa de dosis efectiva es la tasa a la que se recibe una dosis efectiva. Es una medida de la intensidad de la dosis de radiación (o fuerza). Por lo tanto, la tasa de dosis efectiva se define como:

tasa de dosis efectiva - definición

En unidades convencionales, se mide en mSv / seg ,  Sv / hr, mrem / sec o rem / hr. Dado que la cantidad de exposición a la radiación depende directamente (linealmente) del tiempo que las personas pasan cerca de la fuente de radiación, la dosis efectiva es igual a la intensidad del campo de radiación (tasa de dosis) multiplicado por el tiempo de permanencia en ese campo. El ejemplo anterior indica que una persona podría esperar recibir una dosis de 25 milirems al permanecer en un campo de 50 milirems / hora durante treinta minutos.

Cálculo de la tasa de dosis protegida

Suponga la fuente isotrópica puntual que contiene 1.0 Ci de 137 Cs , que tiene una vida media de 30.2 años . Tenga en cuenta que la relación entre la vida media y la cantidad de radionúclido requerida para dar una actividad de un curie se muestra a continuación. Esta cantidad de material se puede calcular usando λ, que es la constante de descomposición de ciertos nucleidos:

Curie - Unidad de Actividad

Alrededor del 94,6 por ciento se desintegra por emisión beta a un isómero nuclear de bario metaestable : bario-137m. El pico principal de fotones de Ba-137m es 662 keV . Para este cálculo, suponga que todas las desintegraciones pasan por este canal.

Calcule la tasa de dosis primaria de fotones , en sieverts por hora (Sv.h -1 ), en la superficie externa de un blindaje de plomo de 5 cm de espesor. Luego calcule las tasas de dosis equivalentes y efectivas para dos casos.

  1. Suponga que este campo de radiación externo penetra de manera uniforme en todo el cuerpo. Eso significa: Calcular la tasa de dosis efectiva de todo el cuerpo .
  2. Suponga que este campo de radiación externo penetra solo en los pulmones y los otros órganos están completamente protegidos. Eso significa: calcular la tasa de dosis efectiva .

Tenga en cuenta que, la tasa de dosis de fotones primarios descuida todas las partículas secundarias. Suponga que la distancia efectiva de la fuente desde el punto de dosis es de 10 cm . También supondremos que el punto de dosis es tejido blando y que puede ser simulado razonablemente por el agua y usamos el coeficiente de absorción de energía de masa para el agua.

Ver también: atenuación de rayos gamma

Ver también: Blindaje de rayos gamma

Solución:

La tasa de dosis de fotones primarios se atenúa exponencialmente , y la tasa de dosis de fotones primarios, teniendo en cuenta el escudo, viene dada por:

cálculo de la tasa de dosis

Como se puede ver, no tenemos en cuenta la acumulación de radiación secundaria. Si se producen partículas secundarias o si la radiación primaria cambia su energía o dirección, entonces la atenuación efectiva será mucho menor. Esta suposición generalmente subestima la tasa de dosis real, especialmente para protecciones gruesas y cuando el punto de dosis está cerca de la superficie de la protección, pero esta suposición simplifica todos los cálculos. Para este caso, la tasa de dosis real (con la acumulación de radiación secundaria) será más de dos veces mayor.

Para calcular la tasa de dosis absorbida , tenemos que usar en la fórmula:

  • k = 5,76 x 10 -7
  • S = 3.7 x 10 10 s -1
  • E = 0.662 MeV
  • μ t / ρ =  0.0326 cm 2 / g (los valores están disponibles en NIST)
  • μ = 1.289 cm -1 (los valores están disponibles en NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

La tasa de dosis absorbida resultante en grises por hora es entonces:

tasa de dosis absorbida - gray - cálculo

1) irradiación uniforme

Dado que el factor de ponderación de la radiación para los rayos gamma es igual a uno y hemos asumido el campo de radiación uniforme (el factor de ponderación del tejido también es igual a la unidad), podemos calcular directamente la tasa de dosis equivalente y la tasa de dosis efectiva (E = H T ) de la tasa de dosis absorbida como:

cálculo - dosis efectiva - uniforme

2) irradiación parcial

En este caso, suponemos una irradiación parcial de los pulmones solamente. Por lo tanto, tenemos que usar el factor de ponderación del tejido , que es igual a T = 0.12 . El factor de ponderación de la radiación para los rayos gamma es igual a uno. Como resultado, podemos calcular la tasa de dosis efectiva como:

cálculo - dosis efectiva - no uniforme

Tenga en cuenta que, si una parte del cuerpo (p. Ej., Los pulmones) recibe una dosis de radiación, representa un riesgo de un efecto particularmente perjudicial (p. Ej., Cáncer de pulmón). Si se administra la misma dosis a otro órgano, representa un factor de riesgo diferente.

Si queremos dar cuenta de la acumulación de radiación secundaria, entonces tenemos que incluir el factor de acumulación. La fórmula extendida para la tasa de dosis es entonces:

tasa de dosis absorbida - gris

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la radiación ionizante? Definición

La radiación ionizante es cualquier radiación (partículas u ondas electromagnéticas) que transporta suficiente energía para eliminar electrones de átomos o moléculas, ionizándolos. Dosimetría de radiación
radiación ionizante - símbolo de peligro
radiación ionizante – símbolo de peligro

La radiación ionizante es cualquier radiación ( partículas u ondas electromagnéticas ) que transporta suficiente energía para eliminar electrones de átomos o moléculas, ionizándolos. Para la radiación ionizante, la energía cinética de las partículas ( fotones, electrones, etc. ) es suficiente y la partícula puede ionizar (para formar iones perdiendo electrones) átomos objetivo para formar iones.

El límite entre las radiaciones ionizantes y no ionizantes no está claramente definido, ya que diferentes moléculas y átomos se ionizan a diferentes energías. Esto es típico de las ondas electromagnéticas. Entre las ondas electromagnéticas pertenecen, en orden de frecuencia (energía) creciente y longitud de onda decreciente: ondas de radio, microondas, radiación infrarroja, luz visible, radiación ultravioleta, rayos X y rayos gamma. Los rayos gamma , los rayos X y la parte ultravioleta superior del espectro son ionizantes, mientras que la luz ultravioleta inferior, la luz visible (incluida la luz láser), el infrarrojo, las microondas y las ondas de radio se consideran radiaciones no ionizantes.

Todos  los efectos del daño biológico  comienzan con la consecuencia de interacciones de radiación con los  átomos que  forman las células. Todos los seres vivos están compuestos por una o más células. Cada parte de su cuerpo consiste en células o fue construida por ellas. Aunque tendemos a pensar en los efectos biológicos en términos del efecto de la radiación sobre las células vivas, en realidad, la  radiación ionizante , por definición, interactúa solo con los átomos mediante un proceso llamado ionización.

El peligro de la radiación ionizante radica en el hecho de que la radiación es invisible y no es directamente detectable por los sentidos humanos. La gente no puede ver ni sentir radiación, pero deposita energía en las moléculas del cuerpo. La energía se transfiere en pequeñas cantidades para cada interacción entre la radiación y una molécula y generalmente hay muchas de esas interacciones.

Formas de radiación ionizante.

Blindaje de la radiación ionizanteLa radiación ionizante se clasifica según la naturaleza de las partículas u ondas electromagnéticas que crean el efecto ionizante. Estas partículas / ondas tienen diferentes mecanismos de ionización y pueden agruparse como:

  • Directamente ionizante . Las partículas cargadas ( núcleos atómicos, electrones, positrones, protones, muones, etc. ) pueden ionizar átomos directamente por interacción fundamental a través de la fuerza de Coulomb si lleva suficiente energía cinética. Estas partículas deben moverse a velocidades relativistas para alcanzar la energía cinética requerida. Incluso los fotones (rayos gamma y rayos X) pueden ionizar átomos directamente (a pesar de que son eléctricamente neutros) a través del efecto fotoeléctrico y el efecto Compton, pero la ionización secundaria (indirecta) es mucho más significativa.
    • La radiación alfa . La radiación alfa consisteen partículas alfa a alta energía / velocidad. La producción de partículas alfa se denomina desintegración alfa. Las partículas alfa consisten en dos protones y dos neutrones unidos en una partícula idéntica a un núcleo de helio. Las partículas alfa son relativamente grandes y tienen una carga positiva doble. No son muy penetrantes y un trozo de papel puede detenerlos. Viajan solo unos pocos centímetros pero depositan todas sus energías a lo largo de sus cortos caminos.
    • La radiación beta . La radiación beta consiste en electrones libres o positrones a velocidades relativistas. Las partículas beta (electrones) son mucho más pequeñas que las partículas alfa. Llevan una sola carga negativa. Son más penetrantes que las partículas alfa, pero el metal de aluminio delgado puede detenerlas. Pueden viajar varios metros pero depositan menos energía en cualquier punto a lo largo de sus caminos que las partículas alfa.
  • Indirectamente ionizante . La radiación ionizante indirecta es partículas eléctricamente neutras y, por lo tanto, no interactúa fuertemente con la materia. La mayor parte de los efectos de ionización se deben a ionizaciones secundarias.
    • Radiación de fotones ( rayos gamma o rayos X). La radiación de fotones consiste en fotones de alta energía . Estos fotones son partículas / ondas (dualidad onda-partícula) sin masa en reposo o carga eléctrica. Pueden viajar 10 metros o más en el aire. Esta es una larga distancia en comparación con las partículas alfa o beta. Sin embargo, los rayos gamma depositan menos energía a lo largo de sus caminos. El plomo, el agua y el concreto detienen la radiación gamma. Los fotones (rayos gamma y rayos X) pueden ionizar átomos directamente a través del efecto fotoeléctrico y el efecto Compton, donde se produce el electrón relativamente energético. El electrón secundario producirá múltiples eventos de ionización , por lo tanto, la ionización secundaria (indirecta) es mucho más significativa.
    • Radiación de neutrones . La radiación de neutrones consiste en neutrones libres a cualquier energía / velocidad. Los neutrones pueden ser emitidos por fisión nuclear o por la descomposición de algunos átomos radiactivos. Los neutrones tienen carga eléctrica cero y no pueden causar ionización directamente. Los neutrones ionizan la materia solo indirectamente . Por ejemplo, cuando los neutrones golpean los núcleos de hidrógeno, se produce radiación de protones (protones rápidos). Los neutrones pueden variar desde partículas de alta velocidad y alta energía a partículas de baja velocidad y baja energía (llamadas neutrones térmicos). Los neutrones pueden viajar cientos de pies en el aire sin ninguna interacción.

Radiación alta-baja y baja-baja

Factores de ponderación de la radiación - actual - ICRP
Fuente: ICRP Publ. 103: Las Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica

Como se escribió, cada tipo de radiación interactúa con la materia de una manera diferente . Por ejemplo, las partículas cargadas con altas energías pueden ionizar átomos directamente. Las partículas alfa son bastante masivas y llevan una carga positiva doble, por lo que tienden a viajar solo una corta distancia y no penetran demasiado en el tejido, si es que lo hacen. Sin embargo, las partículas alfa depositarán su energía en un volumen más pequeño (posiblemente solo unas pocas células si entran en un cuerpo) y causarán más daño a esas pocas células.

Las partículas beta (electrones) son mucho más pequeñas que las partículas alfa. Llevan una sola carga negativa. Son más penetrantes que las partículas alfa. Pueden viajar varios metros pero depositan menos energía en cualquier punto a lo largo de sus caminos que las partículas alfa. Esto significa que las partículas beta tienden a dañar más células, pero con menos daño a cada una. Por otro lado, las partículas eléctricamente neutras interactúan solo indirectamente, pero también pueden transferir parte o la totalidad de sus energías a la materia.

Sin duda, simplificaría las cosas si los efectos biológicos de la radiación fueran directamente proporcionales a la dosis absorbida . Desafortunadamente, los efectos biológicos dependen también de la forma en que la dosis absorbida se distribuye a lo largo de la trayectoria de la radiación. Los estudios han demostrado que la radiación alfa y de neutrones causa un daño biológico mayor para una deposición de energía dada por kg de tejido que la radiación gamma. Se descubrió que los efectos biológicos de cualquier radiación aumentan con la transferencia de energía lineal (LET). En resumen, el daño biológico de la radiación de alto LET ( partículas alfa , protones o neutrones) es mucho mayor que el de la radiación de baja LET ( rayos gamma ). Esto se debe a que el tejido vivo puede reparar más fácilmente el daño de la radiación que se extiende sobre un área grande que la que se concentra en un área pequeña. Por supuesto, a niveles muy altos de exposición, los rayos gamma pueden causar mucho daño a los tejidos.

Debido a que se produce más daño biológico por la misma dosis física (es decir, la misma energía depositada por unidad de masa de tejido), un gris de radiación alfa o de neutrones es más dañino que un gray de radiación gamma. Este hecho de que las radiaciones de diferentes tipos (y energías) dan diferentes efectos biológicos para la misma dosis absorbida se describe en términos de factores conocidos como la efectividad biológica relativa (RBE) y el factor de ponderación de la radiación (wR).

El factor de ponderación de la radiación es un factor adimensional utilizado para determinar la dosis equivalente a partir de la dosis absorbida promediada sobre un tejido u órgano y se basa en el tipo de radiación absorbida. La dosis ponderada resultante se designó como la dosis equivalente de órgano o tejido:

dosis equivalente - ecuación - definición

dosis equivalente - definiciónUna dosis equivalente de un Sievert representa la cantidad de dosis de radiación que es equivalente, en términos de daño biológico especificado , a un gris de rayos X o rayos gamma . La dosis equivalente es una cantidad no física (w R se deriva de consecuencias biológicas de la radiación ionizante), ampliamente utilizado en la dosimetría medida por dosímetros. La dosis equivalente es designada por la ICRP como una «cantidad limitante»; especificar los límites de exposición para garantizar que «la aparición de efectos estocásticos sobre la salud se mantenga por debajo de niveles inaceptables y que se eviten las reacciones tisulares».

Energía de ionización

La energía de ionización , también llamada potencial de ionización , es la energía necesaria para eliminar un electrón del átomo neutro.

X + energía → X + + e 

donde X es cualquier átomo o molécula capaz de ionizarse, X + es ese átomo o molécula con un electrón eliminado (ion positivo), y e  es el electrón eliminado.

Un átomo de nitrógeno, por ejemplo, requiere la siguiente energía de ionización para eliminar el electrón más externo.

N + IE → N + + e         IE = 14.5 eV

La energía de ionización asociada con la eliminación del primer electrón se usa con mayor frecuencia. El n energía º ionización se refiere a la cantidad de energía requerida para quitar un electrón de la especie con una carga de ( n -1).

1ra energía de ionización

X → X + + e 

2da energía de ionización

+ → X 2+ + e 

3ra energía de ionización

2+ → X 3+ + e 

Energía de ionización para diferentes elementos

Hay una energía de ionización por cada electrón sucesivo eliminado. Los electrones que rodean el núcleo se mueven en órbitas bastante bien definidas. Algunos de estos electrones están más unidos en el átomo que otros. Por ejemplo, solo se requieren 7.38 eV para eliminar el electrón más externo de un átomo de plomo, mientras que se requieren 88,000 eV para eliminar el electrón más interno. Ayuda a comprender la reactividad de los elementos (especialmente metales, que pierden electrones).

En general, la energía de ionización aumenta al subir un grupo y moverse de izquierda a derecha durante un período. Además:

  • La energía de ionización es más baja para los metales alcalinos que tienen un solo electrón fuera de una capa cerrada.
  • La energía de ionización aumenta en una fila en el máximo periódico para los gases nobles que tienen conchas cerradas

Por ejemplo, el sodio requiere solo 496 kJ / mol o 5.14 eV / átomo para ionizarlo. Por otro lado, el neón, el gas noble, que lo precede inmediatamente en la tabla periódica, requiere 2081 kJ / mol o 21.56 eV / átomo.

Energía de ionización
Fuente: wikipedia.org Licencia: CC BY-SA 3.0

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

Qué es el radón – Efectos sobre la salud – Riesgos para la salud – Definición

El radón es un gas noble natural, que posee riesgos muy importantes para la salud de la población. La dosis de radiación anual promedio para una persona del radón es de aproximadamente 2 mSv / año y puede variar en muchos órdenes de magnitud de un lugar a otro. Radón – Efectos sobre la salud – Riesgos para la salud

El radón es un gas noble incoloro, inodoro e insípido , que se produce naturalmente como producto de descomposición del radio. Todos los isótopos del radón son radiactivos , pero los dos isótopos del radón radón-222 y radón-220 son muy importantes desde el punto de vista de la protección radiológica.

  • radón y torón
    Fuente: JANIS (software de información de datos nucleares basado en Java); ENDF / B-VII.1

    Radón-222 . El isótopo radón-222 es un producto de descomposición natural del isótopo de uranio más estable (uranio-238), por lo tanto, es un miembro de la serie de uranio .

  • Radón-220 . El isótopo radón-220, comúnmente conocido como torón , es un producto de descomposición natural del isótopo de torio más estable ( torio-232 ), por lo tanto, es un miembro de la serie de torio .

Es importante tener en cuenta que el radón es un gas noble , mientras que todos sus productos de descomposición son metales . El mecanismo principal para la entrada de radón en la atmósfera es la difusión a través del suelo . Como gas, el radón se difunde a través de las rocas y el suelo. Cuando el radón se desintegra, los isótopos metálicos hijos son iones que se unirán a otras moléculas como el agua y a las partículas de aerosol en el aire. Por lo tanto, todas las discusiones sobre las concentraciones de radón en el medio ambiente se refieren al radón-222.. Si bien la tasa promedio de producción de radón-220 (torón) es aproximadamente la misma que la del radón-222, la cantidad de radón-220 en el medio ambiente es mucho menor que la del radón-222 debido a una vida media significativamente más corta ( tiene menos tiempo para difundirse) de radón-222 (55 segundos, versus 3.8 días respectivamente). Simplemente el radón-220 tiene menos posibilidades de escapar de la roca madre.

Radón-222

radón - fuente - ambiente
Serie de uranio – Fuente de radón-222.

El radón-222 es un gas producido por la descomposición del radio-226. Ambos son parte de la serie de uranio natural. Dado que el uranio se encuentra en el suelo en todo el mundo en concentraciones variables, también la dosis del radón gaseoso varía en todo el mundo. El radón 222 es el isótopo más importante y más estable del radón. Tiene una vida media de solo 3,8 días , lo que hace que el radón sea uno de los elementos más raros, ya que se desintegra rápidamente. Una fuente importante de radiación natural es el gas radón, que se filtra continuamente desde la roca madre pero que, debido a su alta densidad, puede acumularse en casas con poca ventilación. El hecho de que el radón es gasjuega un papel crucial en la difusión de todos sus núcleos hijos. Simplemente el radón es un medio de transporte desde la roca madre a la atmósfera (o dentro de los edificios) para sus productos de descomposición de corta duración ( Pb-210 y Po-210 ), que presentan muchos más riesgos para la salud.

Efectos sobre la salud del radón

El radón suele ser la fuente natural de radiación más grande que contribuye a la exposición de los miembros del público, a veces representa la mitad de la exposición total de todas las fuentes. El riesgo para la salud debido a la exposición al radón y al torón proviene principalmente de la inhalación de los productos de descomposición de corta duración (Pb-210 y Po-210) y la irradiación de partículas alfa resultante de los bronquios y los pulmones.

Mientras estos isótopos estén fuera del cuerpo, solo la radiación gamma podrá administrar una dosis. Pero el radón es un gas y se difunde fuera del suelo para mezclarse con el aire. La vida media del radón 222 es larga en comparación con el tiempo de residencia del aire en los pulmones, por lo que la descomposición del radón es relativamente pequeña durante la respiración. Además, el radón es un gas noble y su inercia impide su retención a largo plazo dentro del cuerpo. Pero cuando el radón se desintegra, los isótopos metálicos hijos ( Pb-210 y Po-210) no son inertes y se unen a otras moléculas como el agua y a las partículas de aerosol en el aire. Cuando se inhalan estas partículas, el cuerpo retiene parte del plomo 210. La ingestión de plomo-210 también es una forma posible. Como el plomo 210 es un emisor beta débil, no causa dosis importantes. El plomo 210 es, por lo tanto, un medio de transporte del aire interior al cuerpo. La radiación del radón y sus productos de descomposición es una mezcla de partículas alfa y partículas beta, así como la radiación gamma. Cuando los isótopos entran al cuerpo, contribuyen todos los tipos de radiación.

Pero es el polonio-210 , el producto de descomposición del plomo-210, que emite una partícula alfa de 5.3 MeV , que proporciona la mayor parte de la dosis equivalente . Las partículas alfa , que pertenecen a la radiación de alta LET , son bastante masivas y llevan una carga positiva doble, por lo que tienden a viajar solo una corta distancia y no penetran demasiado en el tejido, si es que lo hacen. Sin embargo, las partículas alfa depositarán su energía en un volumen más pequeño (posiblemente solo unas pocas células si entran en un cuerpo) y causarán más daño a esas pocas células (más del 80% de la energía absorbida del radón se debe a las partículas alfa). Por lo tanto, el factor de ponderación de la radiación para la radiación alfa es igual a 20. Una dosis absorbida de 1 mGy por partículas alfa conducirá a una dosis equivalente de 20 mSv. En resumen, el radón y el plomo pueden verse como diferentes tipos de portadores de polonio-210.

Radón - Fuente natural de radiaciónLa cantidad de isótopos ingeridos con la comida es insignificante, y toda preocupación es sobre la respiración y la deposición de hijas de radón en los bronquios y en los pulmones. Entre los no fumadores, el radón es la principal causa de cáncer de pulmón y, en general, la segunda causa principal. La dosis de radiación anual promedio para una persona del radón es de aproximadamente 2 mSv / año y puede variar en muchos órdenes de magnitud de un lugar a otro. Según un informe de 2003 de la evaluación de riesgos de radón de la EPA en los hogares, la evidencia epidemiológica muestra un vínculo claro entre el cáncer de pulmón y las altas concentraciones de radón.

Debe enfatizarse que los cigarrillos también contienen polonio-210, que se origina a partir de los productos de descomposición del radón, que se adhieren a las hojas de tabaco. El polonio-210 emite una partícula alfa de 5.3 MeV, que proporciona la mayor parte de la dosis equivalente. Fumar en exceso produce una dosis de 160 mSv / año en puntos localizados en las bifurcaciones de bronquios segmentarios en los pulmones debido a la descomposición del polonio-210. Esta dosis no es fácilmente comparable a los límites de protección radiológica , ya que esta última se ocupa de las dosis de todo el cuerpo, mientras que la dosis de fumar se administra a una porción muy pequeña del cuerpo.

Radón dentro de casas

Debe enfatizarse, las concentraciones de radón-222 y radón-220 en el suelo y en los materiales de construcción varían en muchos órdenes de magnitud de un lugar a otro y muestran una variación significativa en el tiempo en cualquier sitio dado. Las ubicaciones con mayor fondo de radón están bien mapeadas en cada país. Al aire libre, oscila entre 1 y 100 Bq / m3, incluso menos (0.1 Bq / m3) sobre el océano. En cuevas o minas aireadas, o casas mal aireadas, su concentración sube a 20–2,000 Bq / m3. En la atmósfera exterior, también hay cierta advección causada por el viento y los cambios en la presión barométrica.

radón - mitigación - casa
El gas radón puede penetrar en la casa a través de grietas (debido al efecto de chimenea) en el piso y las paredes del sótano. Fuente: suro.cz

Los problemas con el radón están en las casas, donde se puede acumular especialmente, debido a su alta densidad, en áreas bajas como sótanos y espacios subterráneos . RadónTambién puede ocurrir en aguas subterráneas, por ejemplo, en algunas aguas de manantial y aguas termales. Existen varias posibilidades para la liberación de radón en las casas. El hecho de que el radón es un gas noble juega un papel crucial en la difusión de todos sus núcleos hijos. Simplemente el radón es un medio de transporte desde la roca madre a la atmósfera (o dentro de los edificios) para sus productos de descomposición de corta duración (Pb-210 y Po-210), que presentan muchos más riesgos para la salud. Las fuentes principales son la roca o el suelo sobre el que se construye la casa, así como el suministro de agua. El mecanismo principal para la entrada de radón en los edificios es la difusión a través del suelo . Como gas, el radón se difunde a través de las rocas y el suelo. El gas radón puede penetrar en la casa a través de grietas.(debido a un efecto de chimenea) en el piso y las paredes del sótano. El calentamiento del aire crea una succión de aire desde la parte inferior de la casa, hacia la parte superior de la casa. Sin ninguna membrana de radón, esto realmente significa que el aire del suelo debajo de la casa es absorbido por la casa a través de numerosas grietas y aberturas en el piso .

Además, los materiales de construcción (por ejemplo, algunos granitos) también son una fuente de radón. Otra fuente de radón es el suministro de agua. El agua de pozos, en particular en regiones con granito rico en radio, puede contener altas concentraciones de radón. Este es un material con mayores concentraciones de uranio / radio a partir del cual se genera radón continuamente. Dichos materiales, por ejemplo, escorias, cenizas volantes, etc., podrían usarse en algunos lugares. Para los materiales de construcción que se utilizan para la construcción de casas, se deben determinar los límites críticos para las concentraciones específicas de radio.

El mayor riesgo de exposición al radón surge en edificios herméticos, con poca ventilación y fugas en los cimientos que permiten que el aire del suelo entre en los sótanos y en las habitaciones. El nivel interno de radón varía considerablemente con el clima, la época del año e incluso la hora del día, y por supuesto con el sistema de ventilación. Por ejemplo, dormir con una ventana abierta puede reducir el contenido de radón considerablemente.

La mayoría de los países han adoptado una concentración de radón de 200–400 Bq / m 3 para el aire interior como un Nivel de Acción o Referencia. Si las pruebas muestran niveles de menos de 4 picocuries de radón por litro de aire (150 Bq / m 3 ), entonces no es necesaria ninguna acción. Se han encontrado concentraciones muy altas de radón (> 1000 Bq / m 3 ) en casas construidas en suelos con un alto contenido de uranio y / o alta permeabilidad del suelo.

Mitigación del radón

La mitigación del radón en el aire se logra a través de la ventilación , ya sea recolectada debajo de una losa de piso de concreto o una membrana en el suelo, o aumentando los cambios de aire por hora en el edificio. Las membranas resistentes al radón generalmente se producen a partir de polietileno de baja densidad (LDPE) y se extienden por todo el edificio, incluidos el piso y las paredes. Otra forma de mitigar el radón es un sistema de tratamiento que utiliza aireación o carbón activado para eliminar el radón de los suministros de agua domésticos.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

Qué es la radiación cósmica – Rayo cósmico – Definición

La radiación cósmica se refiere a las fuentes de radiación en forma de rayos cósmicos que provienen del Sol o del espacio exterior. La radiación cósmica primaria consiste en una mezcla de protones de alta energía (~ 87%), partículas alfa (~ 11%), electrones de alta energía (~ 1%) y un rastro de núcleos más pesados ​​(~ 1%). Dosimetría de radiación

Radiación cósmica

Radiación Cósmica - Fuente Natural de Radiación
Fuente: nasa.gov Licencia: Dominio público

La radiación cósmica se refiere a las fuentes de radiación en forma de rayos cósmicos que provienen del Sol o del espacio exterior. La tierra siempre ha sido bombardeada por partículas de alta energía que se originan en el espacio exterior y generan lluvias de partículas secundarias en la atmósfera inferior. Las partículas cargadas (especialmente los protones de alta energía) del sol y el espacio exterior interactúan con la atmósfera terrestre y el campo magnético para producir una lluvia de radiación (es decir, una ducha de aire), típicamente radiación beta y gamma . Si vive en elevaciones más altas o es un pasajero frecuente de una aerolínea, esta exposición puede ser significativamente mayor, ya que la atmósfera es más delgada aquí. Los efectos del campo magnético de la tierra.También determina la dosis de la radiación cósmica .

A nivel del suelo, los muones , con energías principalmente entre 1 y 20 GeV, contribuyen con aproximadamente el 75% de la tasa de dosis absorbida en el aire libre. El resto proviene de electrones producidos por los muones o presentes en la cascada electromagnética. La dosis anual de rayos cósmicos al nivel del mar es de alrededor de 0.27 mSv (27 mrem).

Composición de la radiación cósmica.

La radiación cósmica primaria consiste en una mezcla de protones de alta energía (~ 87%), partículas alfa (~ 11%), electrones de alta energía (~ 1%) y un rastro de núcleos más pesados ​​(~ 1%). La energía de estas partículas oscila entre 10 8 eV y 10 20 eV. Una fracción muy pequeña son partículas estables de antimateria , como positrones o antiprotones . La naturaleza precisa de esta fracción restante es un área de investigación activa.

fuente cósmica de radiaciónPosteriormente, se produce una gran cantidad de partículas secundarias , en particular, neutrones y piones cargados como resultado de las interacciones entre las partículas primarias y la atmósfera de la Tierra. Dado que los piones son partículas subatómicas de corta duración, la posterior descomposición de los piones resulta en la producción de muones de alta energía . A nivel del suelo, los muones , con energías principalmente entre 1 y 20 GeV, contribuyen con aproximadamente el 75% de la tasa de dosis absorbida en el aire libre. La tasa de dosis de la radiación cósmica varía en diferentes partes del mundo y depende en gran medida del campo geomagnético , la altitud y el ciclo solar.. La tasa de dosis de radiación cósmica en los aviones es tan alta que, según el Informe UNSCEAR 2000 de las Naciones Unidas, los trabajadores de la tripulación de vuelo de las aerolíneas reciben más dosis en promedio que cualquier otro trabajador, incluidos los de las centrales nucleares.

También tenemos que incluir los neutrones a nivel del suelo. Los rayos cósmicos interactúan con los núcleos en la atmósfera y producen también neutrones de alta energía . Según UNSCEAR, la fluidez de los neutrones es de 0.0123 cm -2 s –1 a nivel del mar para una latitud geomagnética de 45 N. En base a esto, la dosis anual efectiva de neutrones a nivel del mar y a 50 grados de latitud se estima en 0.08 mSv (8 mrem). Cabe destacar que, en la vecindad de objetos más pesados ​​más grandes, por ejemplo, edificios o barcos, el flujo de neutrones mide más alto. Este efecto se conoce como «firma de neutrones inducida por rayos cósmicos» o » efecto de nave«Tal como se detectó por primera vez con barcos en el mar. Los rayos cósmicos crean lluvias en la atmósfera que incluyen un amplio espectro de neutrones, muones y protones secundarios. Los neutrones secundarios pueden ser de muy alta energía y pueden inducir eventos de espalación en materiales a nivel del suelo. Por lo tanto, en la vecindad de objetos más grandes y pesados, estos neutrones múltiples producidos en eventos de espalación se denominan neutrones de «efecto de barco» .

Los neutrones producidos en la atmósfera superior también son responsables de la generación de carbono radioactivo 14, que es el radionúclido cosmogénico más conocido. El carbono 14 se forma continuamente en la atmósfera superior por la interacción de los rayos cósmicos con el nitrógeno atmosférico. En promedio, solo uno de cada 1.3 x 10 12Los átomos de carbono en la atmósfera es un átomo de carbono 14 radioactivo. Como resultado, todas las sustancias biológicas vivas contienen la misma cantidad de C-14 por gramo de carbono, es decir, 0.3 Bq de actividad de carbono-14 por gramo de carbono. Mientras el sistema biológico esté vivo, el nivel es constante debido a la ingesta constante de todos los isótopos de carbono. Cuando el sistema biológico muere, deja de intercambiar carbono con su entorno y, a partir de ese momento, la cantidad de carbono 14 que contiene comienza a disminuir a medida que el carbono 14 sufre descomposición radiactiva.

Energía de rayos cósmicos

Se ha observado que las energías de los rayos cósmicos de energía ultraalta (UHECR) más enérgicas se aproximan a 3 x 10 20 eV, aproximadamente 40 millones de veces la energía de las partículas aceleradas por el Gran Colisionador de Hadrones. El origen de las partículas de alta energía es del espacio exterior. Se supone que las partículas con una energía de hasta aproximadamente 10 15 eV provienen de nuestra propia galaxia, mientras que aquellas con las energías más altas probablemente tengan un origen extragaláctico.

Clasificación de la radiación cósmica

La radiación cósmica se puede dividir en diferentes tipos según su origen. Hay tres fuentes principales de dicha radiación:

  • Radiación solar cósmica . La radiación cósmica solar se refiere a las fuentes de radiación en forma de partículas de alta energía (predominantemente protones) emitidas por el sol, principalmente en eventos de partículas solares (SPEs).
  • Radiación Cósmica Galáctica . La radiación cósmica galáctica, GCR, se refiere a fuentes de radiación en forma de partículas de alta energía que se originan fuera del sistema solar, pero generalmente desde nuestra galaxia, la Vía Láctea.
  • Radiación de los cinturones de radiación de la Tierra (cinturones de van Allen ). Los cinturones de radiación de Van Allen son zonas de partículas de alta energía (especialmente protones) atrapadas por el campo magnético de la Tierra.

Radiación Cósmica Galáctica

Radiación cósmica galáctica , GCR, se refiere a fuentes de radiación en forma de partículas de alta energía que se originan fuera del sistema solar. Los GCR son núcleos de alta energía de los cuales todos los electrones circundantes han sido eliminados durante su paso de alta velocidad a través de la galaxia. El incidente de GCR en la atmósfera superior consiste en un componente nucleónico, cuyo agregado representa el 98% del total (2% son electrones). El componente nucleónico consiste en una mezcla de protones de alta energía (~ 86%), partículas alfa (~ 12%) y un rastro de núcleos más pesados ​​(~ 1%). Los GCR están atrapados por el campo magnético galáctico, por lo tanto, probablemente se han acelerado en los últimos millones de años y han viajado muchas veces por la galaxia. Su mecanismo de aceleración es incierto, Pero uno de los posibles mecanismos es que las partículas se aceleran por las ondas de choque que se expanden desde las supernovas. La energía de estas partículas oscila entre 108 eV y 10 20 eV. Una fracción muy pequeña son partículas estables de antimateria, como positrones o antiprotones.

La naturaleza precisa de esta fracción restante es un área de investigación activa. La tasa de fluencia de GCR varía con la actividad solar, siendo menor cuando la actividad solar es mayor. En mínimos solares, debido a un menor blindaje del campo magnético solar, la fluencia es significativamente mayor que al máximo solar.

Radiación Cósmica Solar – Evento de Partícula Solar

La radiación cósmica solar se refiere a las fuentes de radiación en forma de partículas de alta energía (predominantemente protones) emitidas por el Sol , principalmente en eventos de partículas solares (SPEs). La radiación solar incidente en la atmósfera superior consiste principalmente en protones (99%), con energías generalmente inferiores a 100 MeV. Los eventos de partículas solares, por ejemplo, ocurren cuando los protones emitidos por el Sol se aceleran cerca del Sol durante una llamarada o en el espacio interplanetario por choques de eyección de masa coronal. Tenga en cuenta que el Sol tiene un ciclo de 11 años, que culmina en un aumento dramático en el número y la intensidad de las erupciones solares, especialmente durante los períodos en que hay numerosas manchas solares.

La radiación solar es un peligro de radiación significativo para las naves espaciales y los astronautas, también produce tasas de dosis significativas a grandes altitudes, pero solo la radiación más energética contribuye a las dosis a nivel del suelo. Tenga en cuenta que cualquiera que haya estado en la superficie de la Luna durante una erupción solar particularmente violenta en 2005 habría recibido una dosis letal .

Radiación de los cinturones de radiación de la Tierra – cinturones Van Allen

cinturones de radiación van Allen - satélites
Fuente: nasa.gov Licencia: Dominio público

Los cinturones de radiación de Van Allen son zonas de partículas de alta energía (especialmente protones) atrapadas por el campo magnético de la Tierra . La mayoría de estas partículas de alta energía se originan del viento solar, que fue capturado y retenido alrededor de un planeta por el campo magnético de esa tierra. El cinturón de van Allen se forma como un toro sobre el ecuador. Hay dos cinturones de radiación van Allen, un cinturón interno está centrado a unos 3.000 kilómetros y un cinturón exterior está centrado a unos 22.000 kilómetros de la superficie de la tierra. Contiene principalmente protones energéticos en el rango de 10-100 MeV.

Las naves espaciales que viajan más allá de la órbita terrestre baja entran en la zona de radiación de los cinturones de Van Allen. Más allá de los cinturones, enfrentan peligros adicionales por los rayos cósmicos y los eventos de partículas solares. Una región entre los cinturones de Van Allen internos y externos se encuentra en dos o cuatro radios de la Tierra y a veces se la conoce como la «zona segura».

Tasa de dosis en avión – Radiación en vuelo

La exposición a la radiación cósmica aumenta rápidamente con la altitud. En vuelo hay dos fuentes principales de radiación natural a considerar: los rayos cósmicos galácticos que siempre están presentes y los eventos de protones solares, a veces llamados eventos de rayos cósmicos solares (SCR), que ocurren esporádicamente. La tasa de dosis de la radiación cósmica varía en diferentes partes del mundo y depende en gran medida del campo geomagnético, la altitud y el ciclo solar. El campo de radiación en las altitudes de los aviones consiste en neutrones, protones y piones. En vuelo, los neutrones aportan del 40 al 80% de la dosis equivalente., dependiendo del campo geomagnético, la altitud y el ciclo solar. La tasa de dosis de radiación cósmica en los aviones es tan alta (pero no peligrosa) que, según el Informe UNSCEAR 2000 de las Naciones Unidas, los trabajadores de la tripulación de vuelo de las aerolíneas reciben más dosis en promedio que cualquier otro trabajador, incluidos los de las centrales nucleares.

La tasa de dosis a nivel del suelo es en promedio de aproximadamente 0.10 μSv / h, pero a la altitud máxima de vuelo (8.8 km o 29,000 pies) puede alcanzar aproximadamente 2.0 μSv / h (o incluso valores más altos). Se puede usar una tasa de dosis de 4 μSv / h para representar la tasa de dosis promedio para todos los vuelos de larga distancia (debido a altitudes más altas). Debe agregarse, para aviones supersónicos como el Concorde, que podrían hacer un vuelo transatlántico en 3.5 horas, la tasa de exposición (aproximadamente 9 μSv / h ) a su altitud de 18 km se incrementó lo suficiente como para dar como resultado la misma exposición a rayos cósmicos por cruce como para chorros convencionales trundling a unos 8 km.

Blindaje de radiación cósmica

magnetosfera - campo magnético terrestre
Representación artística de la estructura de una magnetosfera: 1) Impacto de arco. 2) Magnetosheath. 3) Magnetopausia. 4) Magnetosfera. 5) lóbulo de la cola norte. 6) Lóbulo de la cola sur. 7) Plasmasfera. Fuente: nasa.gov Licencia: Dominio público

El campo magnético de la Tierra proporciona un escudo vital contra la radiación de la radiación cósmica. Además de una atmósfera protectora, también tenemos la suerte de que la Tierra tenga un campo magnético. El campo magnético se extiende varias decenas de miles de kilómetros en el espacio, protegiendo a la Tierra de las partículas cargadas del viento solar y los rayos cósmicos que de otro modo eliminarían la atmósfera superior, incluida la capa de ozono que protege a la Tierra de la dañina radiación ultravioleta. Nos protege de los efectos completos del viento solar y GCR. Sin esta protección, la biosfera de la Tierra podría no existir como lo hace hoy, o al menos estaría limitada al subsuelo. El campo magnético de la Tierra también proporciona un escudo de radiación para los astronautas y la propia ISS, porque está en órbita terrestre baja.

Los cálculos de la pérdida de dióxido de carbono de la atmósfera de Marte, como resultado de la eliminación de iones por el viento solar, indican que la disipación del campo magnético de Marte causó una pérdida casi total de su atmósfera.

Radiación Cósmica – ¿Es peligroso?

Debemos enfatizar que comer plátanos, trabajar como tripulación de vuelo de una aerolínea o vivir en lugares con, aumenta su tasa de dosis anual. Pero no significa que deba ser peligroso. En cada caso, la intensidad de la radiación también es importante. Es muy similar al calor de un incendio (menos radiación energética). Si está demasiado cerca, la intensidad de la radiación de calor es alta y puede quemarse. Si está a la distancia correcta, puede resistir allí sin ningún problema y, además, es cómodo. Si está demasiado lejos de la fuente de calor, la insuficiencia de calor también puede dañarlo. Esta analogía, en cierto sentido, puede aplicarse a la radiación también de fuentes de radiación.

Modelo LNT y Modelo Hormesis
Supuestos alternativos para la extrapolación del riesgo de cáncer frente a la dosis de radiación a niveles de dosis baja, dado un riesgo conocido a una dosis alta: modelo LNT y modelo hormesis.

En caso de radiación de rayos cósmicos , estamos hablando de las llamadas «dosis bajas» . Una dosis baja aquí significa pequeñas dosis adicionales comparables a la radiación de fondo normal ( 10 µSv = dosis diaria promedio recibida del fondo natural). Las dosis son muy muy bajas y, por lo tanto, la probabilidad de inducción de cáncer podría ser casi insignificante. En segundo lugar, y esto es crucial, la verdad sobre las bajas dosis de efectos sobre la salud de la radiación aún necesita ser encontrada. No se sabe exactamente si estas bajas dosis de radiación son perjudiciales o beneficiosas (y dónde está el umbral). Los organismos gubernamentales y reguladores asumen un modelo LNT en lugar de un umbral u hormesisno porque sea más convincente científicamente, sino porque es la estimación más conservadora . El problema de este modelo es que descuida una serie de procesos biológicos de defensa que pueden ser cruciales a dosis bajas . La investigación durante las últimas dos décadas es muy interesante y muestra que pequeñas dosis de radiación administradas a una tasa de dosis baja estimulan los mecanismos de defensa . Por lo tanto, el modelo LNT no se acepta universalmente y algunos proponen una relación de dosis-respuesta adaptativa donde las dosis bajas son protectoras y las dosis altas son perjudiciales. Muchos estudios han contradicho el modelo LNT y muchos de ellos han mostrado una respuesta adaptativa a la dosis baja de radiación que resulta en mutaciones y cánceres reducidos. Este fenómeno se conoce comoHormesis de radiación .

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la dinámica del reactor? – Prueba – Pon a prueba tus conocimientos – Definición

Pon a prueba tus conocimientos – Reactor Dynamics. Con nuestros cuestionarios simples, puede evaluar su conocimiento. Es intuitivo: comience el cuestionario y responda preguntas. Dosimetría de radiación

Siguiente cuestionario:
Esperamos que este artículo, Reactor Dynamics – Quiz – Test your Knowledge , lo ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a obtener información interesante e importante sobre la radiación y los dosímetros.

CategoríasDosimetría de Radiación
Mensaje de navegación
¿Qué es la fuente interna de radiación? Definición
¿Qué es la exposición a la radiación del ciclo del combustible nuclear? Definición

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la reacción nuclear? – Prueba – Pon a prueba tus conocimientos – Definición

Pon a prueba tus conocimientos – Reacciones nucleares. Con nuestros cuestionarios simples, puede evaluar su conocimiento. Es intuitivo: comience el cuestionario y responda preguntas. Dosimetría de radiación

Siguiente cuestionario:
Esperamos que este artículo, Reacción nuclear – Prueba – Ponga a prueba sus conocimientos , lo ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a obtener información interesante e importante sobre la radiación y los dosímetros.

CategoríasDosimetría de Radiación
Mensaje de navegación
¿Qué es la fuente interna de radiación? Definición
¿Qué es la exposición a la radiación del ciclo del combustible nuclear? Definición

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la radiación de fondo natural? Definición

La radiación de fondo natural es radiación ionizante, que se origina en una variedad de fuentes naturales. Esta radiación no está asociada con ninguna actividad humana. Dosimetría de radiación

Fuentes de radiación natural y artificialLa radiación nos rodea . En, alrededor y sobre el mundo en que vivimos. Es una fuerza de energía natural que nos rodea. Es una parte de nuestro mundo natural que ha estado aquí desde el nacimiento de nuestro planeta. Todas las criaturas vivientes, desde el principio de los tiempos, han estado y siguen estando expuestas a la radiación ionizante . La radiación ionizante se genera a través de reacciones nucleares , desintegración nuclear , por temperaturas muy altas o por aceleración de partículas cargadas en campos electromagnéticos.

Radiación de fondo natural

La radiación de fondo natural es radiación ionizante, que se origina en una variedad de fuentes naturales. Todas las criaturas vivientes, desde el principio de los tiempos, han estado y siguen estando expuestas a la radiación ionizante . Esta radiación no está asociada con ninguna actividad humana. Hay isótopos radiactivos en nuestros cuerpos, casas, aire, agua y en el suelo. Todos también estamos expuestos a la radiación del espacio exterior.

Fuentes de radiación de fondo natural

Dividimos todas estas fuentes de radiación natural en tres grupos:

Radiación cósmica

Radiación Cósmica - Fuente Natural de Radiación
Fuente: nasa.gov Licencia: Dominio público

La radiación cósmica se refiere a las fuentes de radiación en forma de rayos cósmicos que provienen del sol o del espacio exterior. A nivel del suelo, los  muones , con energías principalmente entre 1 y 20 GeV, contribuyen con aproximadamente el 75% de la tasa de dosis absorbida en el aire libre. El resto proviene de electrones producidos por los muones o presentes en la cascada electromagnética. La dosis anual de rayos cósmicos   al nivel del mar es de alrededor de  0.27 mSv  (27 mrem). Si vive en elevaciones más altas o es un pasajero frecuente de una aerolínea, esta exposición puede ser significativamente mayor, ya que la atmósfera es más delgada aquí. Los efectos del campo magnético de la  tierra  también determinan la dosis de  la radiación cósmica .

La radiación cósmica se puede dividir en diferentes tipos según su origen. Hay tres fuentes principales de dicha radiación:

  • Radiación solar cósmica . La radiación cósmica solar se refiere a las fuentes de radiación en forma de partículas de alta energía (predominantemente protones) emitidas por el sol, principalmente en eventos de partículas solares (SPEs).
  • Radiación Cósmica Galáctica . La radiación cósmica galáctica, GCR, se refiere a fuentes de radiación en forma de partículas de alta energía que se originan fuera del sistema solar, pero generalmente desde nuestra galaxia, la Vía Láctea.
  • Radiación de los cinturones de radiación de la Tierra (cinturones de van Allen ). Los cinturones de radiación de Van Allen son  zonas de partículas de alta energía (especialmente protones) atrapadas por el campo magnético de la Tierra.

Fondo natural en avión – Radiación en vuelo

La exposición a  la radiación cósmica  aumenta rápidamente con la altitud. En vuelo hay dos fuentes principales de radiación natural a considerar: los  rayos cósmicos galácticos  que siempre están presentes y los eventos de protones solares, a veces llamados eventos de rayos cósmicos solares (SCR), que ocurren esporádicamente. La tasa de dosis de la radiación cósmica varía en diferentes partes del mundo y depende en gran medida del campo geomagnético, la altitud y el ciclo solar. El campo de radiación en las altitudes de los aviones consiste en neutrones, protones y piones. En vuelo, los  neutrones aportan del 40 al 80%  de la  dosis equivalente., dependiendo del campo geomagnético, la altitud y el ciclo solar. La tasa de dosis de radiación cósmica en los aviones es tan alta (pero no peligrosa) que, según el Informe UNSCEAR 2000 de las Naciones Unidas, los trabajadores de la tripulación de vuelo de las aerolíneas reciben más dosis en promedio que cualquier otro trabajador, incluidos los de las centrales nucleares.

La tasa de dosis a nivel del suelo es en promedio de aproximadamente 0.10 μSv / h, pero a la altitud máxima de vuelo (8.8 km o 29,000 pies) puede alcanzar aproximadamente  2.0 μSv / h  (o incluso valores más altos). Se  puede usar una tasa de dosis de  4 μSv / h para representar la tasa de dosis promedio para todos los vuelos de larga distancia (debido a altitudes más altas). Debe agregarse, para aviones supersónicos como el Concorde, que podrían hacer un vuelo transatlántico en 3.5 horas, la tasa de exposición (aproximadamente  9 μSv / h ) a su altitud de 18 km se incrementó lo suficiente como para dar como resultado la misma exposición a rayos cósmicos por cruce como para chorros convencionales trundling a unos 8 km.

El campo magnético de la Tierra como escudo de radiación

magnetosfera - campo magnético terrestre
Representación artística de la estructura de una magnetosfera: 1) Impacto de arco. 2) Magnetosheath. 3) Magnetopausia. 4) Magnetosfera. 5) lóbulo de la cola norte. 6) Lóbulo de la cola sur. 7) Plasmasfera. Fuente: nasa.gov Licencia: Dominio público

El campo magnético de la Tierra  proporciona un escudo vital contra la radiación de la radiación cósmica. Además de una atmósfera protectora, también tenemos la suerte de que la Tierra tenga un campo magnético. El campo magnético se extiende varias decenas de miles de kilómetros en el espacio, protegiendo a la Tierra de las partículas cargadas del viento solar y los rayos cósmicos que de otro modo eliminarían la atmósfera superior, incluida la capa de ozono que protege a la Tierra de la dañina radiación ultravioleta. Nos protege de los efectos completos del viento solar y GCR. Sin esta protección, la biosfera de la Tierra podría no existir como lo hace hoy, o al menos estaría limitada al subsuelo. El campo magnético de la Tierra también proporciona un escudo de radiación para los astronautas y la propia ISS, porque está en órbita terrestre baja.

Los cálculos de la pérdida de dióxido de carbono de la atmósfera de Marte, como resultado de la eliminación de iones por el viento solar, indican que la disipación del campo magnético de Marte causó una pérdida casi total de su atmósfera.

Radiacion Terrestre

La radiación terrestre se refiere a las fuentes de radiación que se encuentran en el suelo, el agua y la vegetación. Los principales isótopos de preocupación para la radiación terrestre son el uranio y los productos de descomposición del uranio, como el torio, el radio y el radón. La tasa de dosis promedio que se origina en los nucleidos terrestres (excepto la exposición al radón) es de aproximadamente  0.057 µGy / h. Los valores máximos se han medido en arena de monazita en Guarapari, Brasil (hasta 50 µGy / hr y en Kerala, India (aproximadamente 2 µGy / hr), y en rocas con una alta concentración de radio en Ramsar, Irán (de 1 a 10 µGy / hr).

radón - mitigación - casa
El gas radón puede penetrar en la casa a través de grietas (debido a un efecto de chimenea) en el piso y las paredes del sótano. Fuente: suro.cz

La dosis de radiación anual promedio para una persona del radón es de aproximadamente  2 mSv / año  y puede variar en muchos órdenes de magnitud de un lugar a otro. El radón es tan importante que generalmente se trata por separado. El radón  es un gas noble incoloro, inodoro e insípido  , que se filtra continuamente del lecho de roca pero que, debido a su alta densidad, puede acumularse en casas con poca ventilación. El hecho de que el  radón sea gas  juega un papel crucial en la difusión de todos sus núcleos hijos. Simplemente el radón es un medio de transporte desde la roca madre a la atmósfera (o dentro de los edificios) para sus productos de descomposición de corta duración ( Pb-210  y  Po-210 ), que presentan muchos más riesgos para la salud.

Radiacion interna

Además de las fuentes cósmicas y terrestres, todas las personas también tienen isótopos radiactivos de potasio 40, carbono 14, plomo 210 y otros dentro de sus cuerpos desde el nacimiento.

Estos isótopos son especialmente  potasio 40 , carbono 14 y también los isótopos de uranio y torio. La variación en la dosis de radiación de una persona a otra no es tan grande como la variación en la dosis de fuentes cósmicas y terrestres. La dosis de radiación anual promedio para una persona a partir de materiales radiactivos internos distintos del radón es de aproximadamente  0.3 mSv / año,  de los cuales:

  • 0.2 mSv / año proviene de potasio-40,
  • 0,12 mSv / año proviene de las series de uranio y torio,
  • 12 μSv / año proviene del carbono-40.

Radiación de fondo y peligro para la salud

No puedes pasar por la vida sin radiación. El peligro de la radiación ionizante radica en el hecho de que la radiación es invisible y no es directamente detectable por los sentidos humanos. La gente no puede ver ni sentir radiación, pero deposita energía en las moléculas del cuerpo.

Modelo LNT y Modelo Hormesis
Supuestos alternativos para la extrapolación del riesgo de cáncer frente a la dosis de radiación a niveles de dosis baja, dado un riesgo conocido a una dosis alta: modelo LNT y modelo hormesis.

Pero no se preocupe , las dosis de la radiación de fondo suelen ser  muy pequeñas (excepto la exposición al radón). Una dosis baja aquí significa pequeñas dosis adicionales comparables a la radiación de fondo normal   ( 10 µSv  = dosis diaria promedio recibida del fondo natural). El problema es que, a dosis muy bajas, es prácticamente imposible correlacionar cualquier irradiación con ciertos efectos biológicos. Esto se debe a que la tasa de cáncer de base ya es muy alta y el riesgo de desarrollar cáncer fluctúa un 40% debido al estilo de vida individual y los efectos ambientales, lo que oscurece los sutiles efectos de la radiación de bajo nivel.

En segundo lugar, y esto es crucial, la verdad sobre las bajas dosis de efectos sobre la salud de la radiación aún necesita ser encontrada. No se sabe exactamente si estas bajas dosis de radiación son perjudiciales o beneficiosas (y dónde está el umbral). Los organismos gubernamentales y reguladores asumen un modelo LNT en lugar de un umbral u hormesis no porque sea más convincente científicamente, sino porque es la estimación más conservadora . El problema de este modelo es que descuida una serie de procesos biológicos de  defensa  que pueden ser cruciales  a dosis bajas . La investigación durante las últimas dos décadas es muy interesante y muestra que pequeñas dosis de radiación administradas a una tasa de dosis baja  estimulan los mecanismos de defensa.. Por lo tanto, el modelo LNT no se acepta universalmente y algunos proponen una relación de dosis-respuesta adaptativa donde las dosis bajas son protectoras y las dosis altas son perjudiciales. Muchos estudios han contradicho el modelo LNT y muchos de ellos han mostrado una respuesta adaptativa a la dosis baja de radiación que resulta en mutaciones y cánceres reducidos. Este fenómeno se conoce como  hormesis de radiación .

De acuerdo con la hipótesis de la hormesis de la radiación , la exposición a la radiación comparable y justo por encima del nivel natural de radiación de fondo no es dañina sino beneficiosa, aunque acepta que niveles de radiación mucho más altos son peligrosos. Los argumentos a favor de la hormesis se centran en algunos estudios epidemiológicos a gran escala y en la evidencia de los experimentos de irradiación animal, pero sobre todo en los recientes avances en el conocimiento de la respuesta adaptativa. Los defensores de la hormesis de la radiación suelen afirmar que las respuestas radioprotectoras en las células y el sistema inmunitario no solo contrarrestan los efectos nocivos de la radiación, sino que también actúan para inhibir el cáncer espontáneo no relacionado con la exposición a la radiación.

Ver también: modelo LNT

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la contaminación superficial? – Definición

La contaminación de la superficie significa que el material radiactivo se ha depositado en las superficies (como paredes, pisos). Puede depositarse libremente, como el polvo ordinario, o puede fijarse con bastante firmeza mediante reacción química. Dosimetría de radiación
contaminación radioactiva
La contaminación radiactiva consiste en material radiactivo, que genera radiación ionizante. Es la fuente de radiación, no la radiación misma.

Contaminación de superficie

La contaminación de la superficie significa que el material radioactivo se ha depositado en superficies (como paredes, pisos). Puede depositarse libremente, como el polvo ordinario, o puede fijarse con bastante firmeza por reacción química. Esta distinción es importante, y clasificamos la contaminación de la superficie en función de la facilidad con que se puede eliminar:

  • Contaminación libre . En el caso de contaminación libre (o contaminación suelta), el material radiactivo puede extenderse. Esta es la contaminación de la superficie que se puede eliminar fácilmente con métodos simples de descontaminación. Por ejemplo, si las partículas de polvo que contienen varios radioisótopos caen sobre la piel o las prendas de la persona, podemos limpiarla o quitarnos la ropa. Una vez que una persona ha sido descontaminada, se eliminan todas las fuentes de radiactividad particulada y el individuo ya no está contaminado. La contaminación libre también es un peligro más grave que la contaminación fija, ya que las partículas de polvo pueden transportarse por el aire y pueden ingerirse fácilmente. Esto conduce a una exposición interna por contaminantes radiactivos. Aunque casi todos los contaminantes son beta radiactivos con el acompañamientoemisión gamma , pero también existe la posibilidad de contaminación alfa en cualquier área de manejo de combustible nuclear.
  • Contaminación fija . En el caso de contaminación fija, el material radioactivo no puede extenderse, ya que está unido química o mecánicamente a las estructuras. No se puede eliminar con métodos de limpieza normales. La contaminación fija es un peligro menos grave que la contaminación libre, no se puede volver a suspender ni transferir a la piel. Por lo tanto, el peligro suele ser solo externo. Por otro lado, depende del nivel de contaminación. Aunque casi todos los contaminantes son beta radiactivos con emisión gamma acompañante, pero también existe la posibilidad de contaminación alfa en cualquier área de manejo de combustible nuclear. A menos que el nivel de contaminación sea muy severo, la tasa de dosis de radiación gamma será pequeña y la exposición externa será significativa solo en contacto con las superficies contaminadas o muy cerca de ellas. Dado que las partículas beta son menos penetrantes que los rayos gamma , la tasa de dosis beta puede ser alta solo en contacto. Un valor de 1 mSv / h en contacto para un nivel de contaminación de 400 – 500 Bq / cm 2 es bastante representativo.

Cálculo de la tasa de dosis blindada en Sieverts de la superficie contaminada

Suponga una superficie, que está contaminada por 1.0 Ci de 137 Cs Suponga que este contaminante puede ser aproximado por la fuente isotrópica puntual que contiene 1.0 Ci de 137 Cs , que tiene una vida media de 30.2 años . Tenga en cuenta que la relación entre la vida media y la cantidad de radionúclido requerida para dar una actividad de un curie se muestra a continuación. Esta cantidad de material se puede calcular usando λ, que es la constante de descomposición de ciertos nucleidos:

Curie - Unidad de Actividad

Alrededor del 94,6 por ciento se desintegra por emisión beta a un isómero nuclear de bario metaestable : bario-137m. El pico principal de fotones de Ba-137m es 662 keV . Para este cálculo, suponga que todas las desintegraciones pasan por este canal.

Calcule la tasa de dosis de fotones primarios , en sieverts por hora (Sv.h -1 ), en la superficie externa de un blindaje de plomo de 5 cm de espesor. Luego calcule las tasas de dosis equivalentes y efectivas para dos casos.

  1. Suponga que este campo de radiación externo penetra de manera uniforme en todo el cuerpo. Eso significa: Calcular la tasa efectiva de dosis para todo el cuerpo .
  2. Suponga que este campo de radiación externo penetra solo en los pulmones y los otros órganos están completamente protegidos. Eso significa: calcular la tasa de dosis efectiva .

Tenga en cuenta que, la tasa de dosis de fotones primarios descuida todas las partículas secundarias. Suponga que la distancia efectiva de la fuente desde el punto de dosis es de 10 cm . También supondremos que el punto de dosis es tejido blando y que el agua puede simularlo razonablemente, y usamos el coeficiente de absorción de energía de masa para el agua.

Ver también: atenuación de rayos gamma

Ver también: Blindaje de rayos gamma

Solución:

La tasa de dosis de fotones primarios se atenúa exponencialmente , y la tasa de dosis de fotones primarios, teniendo en cuenta el escudo, viene dada por:

cálculo de la tasa de dosis

Como se puede ver, no tenemos en cuenta la acumulación de radiación secundaria. Si se producen partículas secundarias o si la radiación primaria cambia su energía o dirección, entonces la atenuación efectiva será mucho menor. Esta suposición generalmente subestima la tasa de dosis real, especialmente para protecciones gruesas y cuando el punto de dosis está cerca de la superficie de la protección, pero esta suposición simplifica todos los cálculos. Para este caso, la tasa de dosis real (con la acumulación de radiación secundaria) será más de dos veces mayor.

Para calcular la tasa de dosis absorbida , tenemos que usar en la fórmula:

  • k = 5,76 x 10 -7
  • S = 3.7 x 10 10 s -1
  • E = 0.662 MeV
  • μ t / ρ =  0.0326 cm 2 / g (los valores están disponibles en NIST)
  • μ = 1.289 cm -1 (los valores están disponibles en NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

La tasa de dosis absorbida resultante en grises por hora es entonces:

tasa de dosis absorbida - gray - cálculo

1) irradiación uniforme

Dado que el factor de ponderación de la radiación para los rayos gamma es igual a uno y hemos asumido el campo de radiación uniforme (el factor de ponderación del tejido también es igual a la unidad), podemos calcular directamente la tasa de dosis equivalente y la tasa de dosis efectiva (E = H T ) de la tasa de dosis absorbida como:

cálculo - dosis efectiva - uniforme

2) irradiación parcial

En este caso, suponemos una irradiación parcial de los pulmones solamente. Por lo tanto, tenemos que usar el factor de ponderación del tejido , que es igual a T = 0.12 . El factor de ponderación de la radiación para los rayos gamma es igual a uno. Como resultado, podemos calcular la tasa de dosis efectiva como:

cálculo - dosis efectiva - no uniforme

Tenga en cuenta que, si una parte del cuerpo (p. Ej., Los pulmones) recibe una dosis de radiación, representa un riesgo de un efecto particularmente perjudicial (p. Ej., Cáncer de pulmón). Si se administra la misma dosis a otro órgano, representa un factor de riesgo diferente.

Si queremos dar cuenta de la acumulación de radiación secundaria, entonces tenemos que incluir el factor de acumulación. La fórmula extendida para la tasa de dosis es entonces:

tasa de dosis absorbida - gris

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la absorción de dosis interna? Definición

Si decimos que la fuente de radiación está dentro de nuestro cuerpo, es exposición interna. Para dosis internas, primero debemos distinguir entre ingesta y absorción. La ingesta significa lo que una persona toma. La captación significa lo que una persona conserva. Captación de dosis interna: exposición interna

Si decimos que la fuente de radiación está dentro de nuestro cuerpo, es exposición interna . La ingesta de material radioactivo puede ocurrir a través de varias vías, como la ingestión de contaminación radioactiva en alimentos o líquidos, la inhalación de gases radiactivos o la piel intacta o herida. La mayoría de los radionucleidos le darán mucha más dosis de radiación si de alguna manera pueden ingresar a su cuerpo, de lo que lo harían si permanecieran afuera. Para dosis internas, primero debemos distinguir entre ingesta y absorción. La ingesta significa lo que una persona toma. La captación significa lo que una persona conserva.

Cuando un compuesto radiactivo ingresa al cuerpo, la actividad disminuirá con el tiempo, debido a la descomposición radiactiva y al aclaramiento biológico . La disminución varía de un compuesto radiactivo a otro. Para este propósito, la vida media biológica se define en la protección radiológica.

La vida media biológica es el tiempo necesario para que la cantidad de un elemento particular en el cuerpo disminuya a la mitad de su valor inicial debido a la eliminación solo por procesos biológicos, cuando la tasa de eliminación es aproximadamente exponencial. La vida media biológica depende de la velocidad a la que el cuerpo normalmente usa un compuesto particular de un elemento. Los isótopos radiactivos que se ingirieron o tomaron a través de otras vías se eliminarán gradualmente del cuerpo a través de los intestinos, los riñones, la respiración y la transpiración. Esto significa que una sustancia radiactiva puede ser expulsada antes de que haya tenido la posibilidad de descomponerse.

Como resultado, la  vida media biológica influye significativamente en la vida media efectiva y la dosis global de la contaminación interna. Si un compuesto radiactivo con semivida radiactiva (t 1/2 ) se elimina del cuerpo con una semivida biológica t b , la semivida efectiva (t e ) viene dada por la expresión:

Como se puede ver, los mecanismos biológicos siempre disminuyen la dosis total de la contaminación interna . Además, si t 1/2 es grande en comparación con t b , la vida media efectiva es aproximadamente la misma que t b .

Por ejemplo, el tritio tiene una vida media biológica de aproximadamente 10 días, mientras que la vida media radiactiva es de aproximadamente 12 años. Por otro lado, los radionúclidos con vidas medias radiactivas muy cortas también tienen vidas medias efectivas muy cortas. Estos radionucleidos administrarán, a todos los efectos prácticos, la dosis total de radiación dentro de los primeros días o semanas después de la ingesta.

Para el tritio, la ingesta límite anual (ALI) es 1 x 10 9 Bq. Si toma 1 x 10 9 Bq de tritio, recibirá una dosis para todo el cuerpo de 20 mSv. La dosis efectiva comprometida , E (t), es por lo tanto 20 mSv. No depende de si una persona realiza esta cantidad de actividad en poco tiempo o en mucho tiempo. En todos los casos, esta persona recibe la misma dosis para todo el cuerpo de 20 mSv.

Dosis efectiva comprometida

En protección radiológica, la dosis comprometida es una cantidad de dosis que mide el riesgo de salud estocástico debido a la ingesta de material radiactivo en el cuerpo humano. La dosis comprometida recibe el símbolo E (t) , donde t es el tiempo de integración en años posteriores a la ingesta. La unidad SI de ) es el sievert (Sv) o aún se usa comúnmente rem (hombre equivalente de roentgen) ( 1 Sv = 100 rem ). La unidad de sievert lleva el nombre del científico sueco Rolf Sievert, que realizó muchos de los primeros trabajos sobre dosimetría en radioterapia.

La dosis comprometida permite determinar las consecuencias biológicas de la irradiación causada por material radiactivo, que está dentro de nuestro cuerpo. Una dosis comprometida de 1 Sv de una fuente interna representa el mismo riesgo efectivo que la misma cantidad de dosis efectiva de 1 Sv aplicada uniformemente a todo el cuerpo desde una fuente externa.

El ICRP define dos cantidades de dosis para la dosis individual comprometida.

Dosis efectiva comprometida

Según la ICRP, la dosis efectiva comprometida, E (t) se define como:

“La suma de los productos de las dosis equivalentes de órganos o tejidos comprometidos y los factores de ponderación de tejidos apropiados (w T ), donde t es el tiempo de integración en años después de la ingesta. Se considera que el período de compromiso es de 50 años para adultos y de 70 años para niños ”.

Dosis equivalente comprometida

Según la ICRP, la dosis equivalente comprometida, H T (t) se define como:

«El tiempo integral de la tasa de dosis equivalente en un tejido u órgano particular que será recibido por un individuo después de la ingesta de material radiactivo en el cuerpo por una Persona de referencia, donde t es el tiempo de integración en años».

Referencia especial: CIPR, 2007. Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica. Publicación 103 de la CIPR. Ann. ICRP 37 (2-4).

Límite anual de admisión – ALI

En la evaluación de las dosis efectivas comprometidas para los trabajadores, las ingestas de material radiactivo están controladas por el Límite anual de ingesta (ALI) definido por el ICRP, y expresado en unidades de actividad ( becquerels o curies ).

El ICRP definió el ALI en la Publicación 60 (ICRP, 1991b, párrafo S30) como:

«La ingesta de actividad (Bq) de un radionúclido que conduciría a una dosis efectiva correspondiente al límite anual E límite; w , bajo la expectativa de que el trabajador esté expuesto solo a este radionúclido».

El ALI del radionúclido j es entonces:

Límite anual de admisión - ALI

donde e (50) es el coeficiente de dosis efectivo comprometido de referencia correspondiente en (Sv / Bq). Este coeficiente de dosis, e (T), está determinado por la radiotoxicidad de un nucleido, y tiene en cuenta la radiación y los factores de ponderación de los tejidos, la información metabólica y biocinética.

Ver también: ICRP, 1994. Coeficientes de dosis para la ingesta de radionucleidos por los trabajadores. Publicación 68 de la CIPR. Ann. CIPR 24 (4).

Límite anual de admisión - ALI
Límites anuales de admisión (ALI) para los trabajadores, lo que resulta en una dosis de 0.020 Sv.

La Comisión recomendó en la Publicación 60 que el ALI se base en el límite de dosis del límite ; w = 0.020 Sv en un año, sin promedios de tiempo. Para los miembros del límite público ; w = 0.001 Sv es el valor recomendado.

Como ejemplo, supongamos una ingesta de tritio radiactivo . Para el tritio, la ingesta límite anual (ALI) es 1 x 10 9 Bq. Si toma 1 x 10 9 Bq de tritio, recibirá una dosis para todo el cuerpo de 20 mSv. Tenga en cuenta que la vida media biológica es de aproximadamente 10 días, mientras que la vida media radiactiva es de aproximadamente 12 años. En lugar de años, lleva un par de meses hasta que el tritio se haya eliminado bastante bien. La dosis efectiva comprometida , E (t), es por lo tanto 20 mSv. No depende de si una persona realiza esta cantidad de actividad en poco tiempo o en mucho tiempo. En todos los casos, esta persona recibe la misma dosis para todo el cuerpo de 20 mSv.

Para 131 I, ICRP ha calculado que si inhala 1 x 10 6 Bq (ALI para 131 I), recibirá una dosis tiroidea de HT = 400 mSv (y una dosis ponderada de todo el cuerpo de 20 mSv).

Concentración de aire derivada – DAC

Las concentraciones de materiales radiactivos en el aire están limitadas por la Concentración de aire derivado (DAC), que se derivan del ALI. El DAC es la concentración de actividad en el aire en unidades de Bq / m 3 del radionúclido considerado, lo que llevaría a una ingesta de un ALI (Bq) suponiendo una tasa de respiración promedio de género de 1.1 m 3 / hy un tiempo de trabajo anual de 2000 h (una toma de aire anual de 2200 m 3 ).

El ICRP definió el CAD en la Publicación 60 (ICRP, 1991b, párrafo S30) como:

“La concentración de aire derivada es igual al límite anual de admisión, ALI (de un radionúclido) dividido por el volumen de aire inhalado por una persona de referencia en un año laboral (es decir, 2.2 × 10 3 m 3 ). La unidad de DAC es Bq / m 3 «.

Referencia especial: CIPR, 2007. Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica. Publicación 103 de la CIPR. Ann. ICRP 37 (2-4).

Por lo tanto, si dividimos el ALI por 2200 m 3 , obtendremos el DAC en Bq / m 3 . Por ejemplo, el ALI de yodo-131 es 1 x 10 6 Bq. El DAC correspondiente será 1 000 000/2400 = 417 Bq / m 3 .

El DAC del radionúclido j viene dado por:

Concentración de aire derivada - DAC - definición

Si un trabajador respira aire que contiene material radiactivo a una concentración de 1 DAC durante una hora, entonces el trabajador ha estado expuesto a 1 DAC.hr.

Ver también: contaminación en el aire

Exposición ocupacional: dosis efectiva

En la mayoría de las situaciones de exposición ocupacional, la dosis efectiva , E, puede derivarse de cantidades operativas utilizando la siguiente fórmula:

Exposición ocupacional: externa e interna.

La dosis comprometida es una cantidad de dosis que mide el riesgo de salud estocástico debido a una ingesta de material radiactivo en el cuerpo humano. Dado que el límite de dosis operativa de 20 mSv se aplica a la suma de las exposiciones internas y externas, si un trabajador tiene alguna dosis externa, el ALI debe modificarse o compensarse para tener en cuenta la dosis externa. Por ejemplo, suponga que el trabajador tiene 10 mSv de fuentes externas de radiación. Solo se permiten 10 mSv más de radiación interna antes de que el trabajador alcance el límite ocupacional de todo el cuerpo.

Ver también: límites de dosis

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la contaminación radiactiva? – Definición

La contaminación radioactiva se conoce como la presencia de sustancias radiactivas no deseadas en las superficies, o dentro de los sólidos (incluido el cuerpo humano), líquidos o gases, donde su presencia es involuntaria o indeseable. Dosimetría de radiación
contaminación radioactiva
La contaminación radiactiva consiste en material radiactivo, que genera radiación ionizante. Es la fuente de radiación, no la radiación misma.

La contaminación se conoce generalmente como la presencia de un constituyente no deseado, sustancia nociva o impureza en un lugar (material, cuerpo físico, entorno natural, lugar de trabajo) donde no se pretende ni se desea. La contaminación tiene un significado mucho más general, ya que se puede definir en disciplinas como la química, la protección del medio ambiente, la protección radiológica o la agricultura.

La contaminación radioactiva se conoce como la presencia de sustancias radiactivas no deseadas en las superficies o dentro de los sólidos (incluido el cuerpo humano), líquidos o gases, donde su presencia es involuntaria o indeseable. La contaminación radiactiva consiste en átomos radioactivos (material) que han escapado del sistema o estructura que normalmente los contendría. Dado que la contaminación radiactiva es material radiactivo, la contaminación emite radiación ionizante. Es muy importante qué material (qué radioisótopo) es el contaminante radioactivo. También es muy importante distinguir entre la contaminación radiactiva y la radiación misma .

Contaminación versus Radiación

La contaminación radiactiva consiste en material radiactivo, que genera radiación ionizante. Es la fuente de radiación, no la radiación misma. Cada vez que el material radiactivo no está en un contenedor sellado de fuente radiactiva y podría extenderse a otros objetos, existe la posibilidad de contaminación radiactiva. La contaminación radiactiva puede caracterizarse por los siguientes puntos:

  • La contaminación radiactiva consiste en material radioactivo (contaminantes), que puede ser sólido, líquido o gaseoso. Los contaminantes grandes pueden ser incluso visibles, pero no se puede ver la radiación producida.
  • Cuando se liberan, los contaminantes pueden propagarse por el aire, el agua o simplemente por contacto mecánico.
  • No podemos proteger la contaminación.
  • Podemos mitigar la contaminación protegiendo la integridad de las barreras (contenedor fuente, revestimiento de combustible, recipiente del reactor , construcción de contención )
  • Como los contaminantes interactúan químicamente, pueden estar contenidos dentro de objetos como el cuerpo humano.
  • Podemos eliminar la contaminación por muchos procesos mecánicos, químicos (superficies descontaminadas) o biológicos ( vida media biológica ).
  • Es de suma importancia qué material es el contaminante radioactivo ( vida media , modo de descomposición, energía).

La radiación ionizante está formada por partículas de alta energía ( fotones , electrones , etc. ), que pueden penetrar la materia e ionizar (para formar iones al perder electrones) los átomos objetivo para formar iones. La exposición a la radiación es la consecuencia de la presencia cerca de la fuente de radiación. La exposición a la radiación como una cantidad se define como una medida de la ionización del material debido a la radiación ionizante. El peligro de la radiación ionizante radica en el hecho de que la radiación es invisible.y no directamente detectable por los sentidos humanos. La gente no puede ver ni sentir radiación, pero deposita energía en las moléculas del cuerpo. La energía se transfiere en pequeñas cantidades para cada interacción entre la radiación y una molécula y generalmente hay muchas de esas interacciones. A diferencia de la contaminación radiactiva, la radiación puede caracterizarse por los siguientes puntos:

  • La radiación consiste en partículas de alta energía que pueden penetrar la materia e ionizar (para formar iones al perder electrones) átomos objetivo. La radiación es invisible y no es directamente detectable por los sentidos humanos. Cabe señalar, la radiación beta es indirectamente visible debido a la radiación cherenkov .
  • A diferencia de la contaminación, la radiación no se puede propagar por ningún medio. Viaja a través de los materiales hasta que pierde su energía. Podemos proteger la radiación (p. Ej., Parados a la vuelta de la esquina).
  • La exposición a la ionización no significa necesariamente que el objeto se vuelva radioactivo (excepto la muy rara radiación de neutrones).
  • La radiación puede penetrar barreras, pero una barrera suficientemente gruesa puede minimizar todos los efectos.
  • A diferencia de los contaminantes, la radiación no puede interactuar químicamente con la materia y no puede unirse dentro del cuerpo.
  • No es importante, qué material es la fuente de cierta radiación. Solo importa el tipo de radiación y energía.

Hay una característica común: la radiación natural y los contaminantes naturales nos rodean . En, alrededor y sobre el mundo en que vivimos. Es una fuerza de energía natural que nos rodea. Es una parte de nuestro mundo natural que ha estado aquí desde el nacimiento de nuestro planeta. Todas las criaturas vivientes, desde el principio de los tiempos, han estado y siguen estando expuestas a la radiación ionizante . La radiación de fondo natural es radiación ionizante, que se origina en una variedad de fuentes naturales. Todas las criaturas vivientes, desde el principio de los tiempos, han estado y siguen estando expuestas a radiaciones ionizantes.. Esta radiación no está asociada con ninguna actividad humana. Hay isótopos radiactivos en nuestros cuerpos, casas, aire, agua y en el suelo. Todos también estamos expuestos a la radiación del espacio exterior.

Tipos de contaminacion

Pueden existir materiales radiactivos en superficies o en volúmenes de material o aire, y se utilizan técnicas especializadas para medir los niveles de contaminación mediante la detección de la radiación emitida. Podemos distinguir entre los siguientes tipos de contaminación:

Contaminación de superficie

La contaminación de la superficie significa que el material radiactivo se ha depositado en las superficies (como paredes, pisos). Puede depositarse libremente, al igual que el polvo ordinario, o puede fijarse con bastante firmeza por reacción química. Esta distinción es importante, y clasificamos la contaminación de la superficie en función de la facilidad con que se puede eliminar:

  • Contaminación libre . En el caso de contaminación libre (o contaminación suelta), el material radiactivo puede extenderse. Esta es la contaminación de la superficie que se puede eliminar fácilmente con métodos simples de descontaminación. Por ejemplo, si las partículas de polvo que contienen varios radioisótopos caen sobre la piel o las prendas de la persona, podemos limpiarla o quitarnos la ropa. Una vez que una persona ha sido descontaminada, se eliminan todas las fuentes de radiactividad particulada y el individuo ya no está contaminado. La contaminación libre también es un peligro más grave que la contaminación fija, ya que las partículas de polvo pueden transportarse por el aire y pueden ingerirse fácilmente. Esto conduce a una exposición interna por contaminantes radiactivos. Aunque casi todos los contaminantes son beta radiactivos con el acompañamientoemisión gamma , pero también existe la posibilidad de contaminación alfa en cualquier área de manejo de combustible nuclear.
  • Contaminación fija . En el caso de contaminación fija, el material radioactivo no puede extenderse, ya que está unido química o mecánicamente a las estructuras. No se puede eliminar con métodos de limpieza normales. La contaminación fija es un peligro menos grave que la contaminación libre, no se puede volver a suspender ni transferir a la piel. Por lo tanto, el peligro suele ser solo externo. Por otro lado, depende del nivel de contaminación. Aunque casi todos los contaminantes son beta radiactivos con emisión gamma acompañante, pero también existe la posibilidad de contaminación alfa en cualquier área de manejo de combustible nuclear. A menos que el nivel de contaminación sea muy severo, la tasa de dosis de radiación gamma será pequeña y la exposición externa será significativa solo en contacto con las superficies contaminadas o muy cerca de ellas. Dado que las partículas beta son menos penetrantes que los rayos gamma , la tasa de dosis beta puede ser alta solo en contacto. Un valor de 1 mSv / h en contacto para un nivel de contaminación de 400 – 500 Bq / cm 2 es bastante representativo.

 

Contaminación en el aire

Este tipo de contaminación es de particular importancia en las centrales nucleares , donde debe ser monitoreado. Los contaminantes pueden transportarse al aire, especialmente durante la extracción de la cabeza superior del reactor, el reabastecimiento de combustible del reactor y durante las manipulaciones dentro de la piscina de combustible gastado. El aire puede estar contaminado con isótopos radiactivos, especialmente en forma de partículas, lo que plantea un peligro de inhalación particular . Esta contaminación consiste en varios productos de fisión y activación que ingresan al aire en forma gaseosa, de vapor o en partículas. Existen cuatro tipos de contaminación en el aire en las centrales nucleares, a saber:

  • Partículas . La actividad de partículas es un peligro interno, ya que puede inhalarse. El material particulado transportable que ingresa al sistema respiratorio ingresará al torrente sanguíneo y será transportado a todas las partes del cuerpo. Las partículas no transportables permanecerán en los pulmones con una cierta vida media biológica. Por ejemplo, Sr-90, Ra-226 y Pu-239 son radionucleidos conocidos como radionucleidos buscadores de hueso. Estos radionúclidos tienen vidas medias biológicas largas y son riesgos internos graves. Una vez depositados en el hueso, permanecen allí esencialmente sin cambios en la cantidad durante la vida del individuo. La acción continua de las partículas alfa emitidas puede causar lesiones significativas: durante muchos años depositan toda su energía en un pequeño volumen de tejido, porque el rango de las partículas alfa es muy corto.
  • Gases nobles . Los gases nobles radiactivos, como el xenón-133 , el xenón-135 y el   criptón-85 están presentes en el refrigerante del reactor, especialmente cuando hay fugas de combustible. A medida que aparecen en el refrigerante, se transportan al aire y pueden inhalarse. Se exhalan justo después de ser inhalados, porque el cuerpo no reacciona químicamente con ellos. Si los trabajadores trabajan en una nube de gas noble, la dosis externa que recibirán es aproximadamente 1000 veces mayor que la dosis interna. Debido a esto, solo nos preocupan las tasas externas de dosis beta y gamma.
  • Yodo 131 - esquema de descomposiciónRadioyodo . El radioyodo , yodo-131 , es un radioisótopo importante del yodo. El radioyodo desempeña un papel importante como isótopo radiactivo presente en los productos de fisión nuclear , y es un contribuyente importante a los peligros para la salud cuando se libera a la atmósfera durante un accidente. El yodo 131 tiene una vida media de 8.02 días. El tejido objetivo para la exposición al radioyodo es la glándula tiroides. La dosis externa de beta y gamma del radioyodo presente en el aire es bastante insignificante en comparación con la dosis comprometida a la tiroides que resultaría de respirar este aire. La vida media biológica.para el yodo dentro del cuerpo humano es de aproximadamente 80 días (según ICRP). El yodo en los alimentos es absorbido por el cuerpo y preferentemente concentrado en la tiroides, donde es necesario para el funcionamiento de esa glándula. Cuando el 131 I está presente en altos niveles en el medio ambiente debido a la lluvia radiactiva, puede ser absorbido a través de alimentos contaminados y también se acumulará en la tiroides. 131 I decae con una vida media de 8.02 días con partículas beta y emisiones gamma. A medida que se descompone, puede causar daño a la tiroides. El riesgo principal de la exposición a altos niveles de 131 I es la posibilidad de aparición de cáncer de tiroides radiogénico en la edad adulta. Para 131 I, ICRP ha calculado que si inhala 1 x 10 6Bq, recibirá una dosis tiroidea de H T = 400 mSv (y una dosis ponderada de todo el cuerpo de 20 mSv).
  • Tritio El tritio es un subproducto en reactores nucleares . La fuente más importante (debido a las liberaciones de agua tritiada) de tritio en las centrales nucleares proviene del ácido bórico , que se usa comúnmente como una cuña químicapara compensar un exceso de reactividad inicial. Tenga en cuenta que el tritio emite partículas beta de baja energía con un rango corto en los tejidos del cuerpo y, por lo tanto, representa un riesgo para la salud como resultado de la exposición interna solo después de la ingestión en agua potable o alimentos, o la inhalación o absorción a través de la piel. El tritio introducido en el cuerpo se distribuye uniformemente entre todos los tejidos blandos. Según la ICRP, un tiempo medio biológico de tritio es de 10 días para HTO y 40 días para OBT (tritio unido orgánicamente) formado a partir de HTO en el cuerpo de adultos. Como resultado, para una ingesta de 1 x 10 9 Bq de tritio (HTO), un individuo recibirá una dosis de todo el cuerpo de 20 mSv (igual a la ingesta de 1 x 10 6 Bq de 131 I). Mientras que para los PWR el tritio representa un riesgo menor para la salud, paraReactores de agua pesada , contribuye significativamente a la dosis colectiva de los trabajadores de la planta. Tenga en cuenta que, “El aire que está saturado con agua de moderador a 35 ° C puede dar 3 000 mSv / h de tritio a un trabajador sin protección (Ver también: JUBurnham. Protección contra la radiación). La mejor protección contra el tritio se puede lograr utilizando un respirador con suministro de aire. Los respiradores con cartucho de tritio protegen a los trabajadores solo por un factor de 3. La única forma de reducir la absorción de la piel es usando plásticos. En las plantas de energía PHWR, los trabajadores deben usar plásticos para trabajar en atmósferas que contengan más de 500 μSv / h.

Los respiradores con filtros de aire adecuados o trajes completamente autónomos con su propio suministro de aire pueden mitigar los peligros de la contaminación del aire. La contaminación en el aire generalmente se mide mediante instrumentos radiológicos especiales que bombean continuamente el aire muestreado a través de un filtro. Los instrumentos que hacen esto se llaman Monitores de aire continuo (CAM). Las partículas radiactivas en el aire se acumulan en el filtro, donde la actividad se mide mediante un detector colocado cerca del filtro.

Ver también: concentración de aire derivado

Ver también: Límite anual de admisión

Descontaminación

La descontaminación es un proceso utilizado para reducir o eliminar la contaminación radiactiva para reducir el riesgo de exposición a la radiación. La eliminación de la contaminación de las áreas ocupadas, el equipo y el personal es importante para mantener una dosis de radiación ionizante tan baja como sea razonablemente posible (ALARA). La descontaminación también reduce los niveles de radiación de fondo, el inventario de materiales radiactivos y la propagación de la contaminación a áreas, equipos y personal no controlados.

La descontaminación se puede lograr limpiando o tratando superficies para reducir o eliminar la contaminación. También se puede lograr filtrando aire o agua contaminada o cubriendo la contaminación para proteger o absorber la radiación. El proceso también puede simplemente permitir un tiempo adecuado para que la desintegración radiactiva natural disminuya la radiactividad.

En las centrales nucleares , es inevitable que muchos elementos del equipo, y también herramientas, ropa, áreas de trabajo e incluso personas se contaminen. Esto es bastante común, que parte del material radiactivo se adhiere a las superficies (por ejemplo, la suela de un zapato). En este caso, los trabajadores son monitoreados continuamente y en este caso, se debe eliminar la contaminación de la superficie. Podemos deshacernos de la contaminación por muchos elementos mecánicos, químicos (descontaminar superficies). Procesos biológicos ( vida media biológica) siempre funcionan en caso de contaminación interna. Una persona se vuelve ‘radiactiva’ si las partículas de polvo que contienen varios radioisótopos caen sobre la piel o las prendas de la persona. Una vez que una persona ha sido descontaminada por la eliminación de la ropa y el lavado dérmico, se eliminan todas las fuentes de radiactividad de partículas y el individuo ya no está contaminado.

Técnicas de descontaminación

En general, existen muchas técnicas y equipos utilizados para la descontaminación de superficies y personas. En cualquier caso, el tipo de contaminación y el material contaminado son importantes. Por ejemplo, es muy difícil descontaminar materiales porosos. Como orientación general para el lector, estas técnicas de descontaminación y sus principales aplicaciones se destacan en:

Referencia especial: Tecnología de vanguardia para la descontaminación y el desmantelamiento de instalaciones nucleares, OIEA. OIEA Viena, 1999. ISBN 92–0–102499–1.

  • Descontaminación Química . La descontaminación química es uno de los mejores métodos para la mayoría de las operaciones de descontaminación es limpiar con agua a la que se han agregado uno o más agentes químicos de limpieza adecuados. Estos métodos incluyen la descontaminación usando soluciones químicas, geles químicos, descontaminación de espuma, etc. La eliminación de la contaminación del personal debe realizarse con cuidado para garantizar que la piel no sufra daños y para evitar que la contaminación ingrese al cuerpo o una herida.
  • Descontaminación Mecánica . La descontaminación mecánica se puede utilizar especialmente para la descontaminación industrial. Existen métodos de descontaminación en los que la capa externa de la superficie contaminada se elimina por la fuerza física. Tales métodos son efectivos, pero son algo toscos y destructivos, y puede que no sea posible usarlos en objetos delicados. Estos métodos incluyen la descontaminación mediante limpieza con vapor, limpieza abrasiva, chorro de arena, limpieza por aspiración, limpieza por ultrasonidos, etc.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.