Facebook Instagram Youtube Twitter

O que é extinção – Dead Time – Geiger Counters – Definição

Para os contadores Geiger, a têmpera externa, às vezes chamada de “têmpera ativa” ou “têmpera eletrônica”, também é uma possibilidade. Os contadores Geiger não conseguem medir altas taxas de radiação devido ao “tempo morto” do tubo.

Dead Time - Detector - Paralisável - Não paralisávelDevido à grande avalanche induzida por qualquer ionização, um contador Geiger leva muito tempo (cerca de 1 ms) para se recuperar entre pulsos sucessivos. Portanto, os contadores Geiger não conseguem medir altas taxas de radiação devido ao ” tempo morto ” do tubo. O  tempo morto  é o tempo após cada evento durante o qual o sistema não pode gravar outro evento.

Em um contador Geiger, o gás de preenchimento da câmara é um gás inerte que é ionizado pela radiação incidente e um gás de resfriamento de 5 a 10% de um vapor orgânico ou de um gás halogênio para evitar pulsações espúrias, extinguindo as avalanches de elétrons. O contador Geiger não deve fornecer pulsos espúrios e deve se recuperar rapidamente para o estado passivo, pronto para o próximo evento de radiação. Argônio e hélio são os gases de enchimento mais usados ​​e permitem a detecção de radiação alfa, beta e gama. Para a detecção de nêutrons, He-3 e BF 3 (trifluoreto de boro) são os gases mais empregados.

No entanto, para cada elétron coletado na câmara, resta um íon de gás com carga positiva. Esses íons gasosos são pesados ​​em comparação com um elétron e se movem muito mais lentamente. Os elétrons livres são muito mais leves que os íons positivos; portanto, eles são atraídos para o eletrodo central positivo muito mais rapidamente do que os íons positivos são atraídos para a parede da câmara. A nuvem resultante de íons positivos próximos ao eletrodo leva a distorções na multiplicação de gases. Eventualmente, os íons positivos se afastam do fio central com carga positiva para a parede com carga negativa e são neutralizados através da obtenção de um elétron. Esses átomos retornam ao seu estado fundamental emitindo fótons que, por sua vez, produzem mais ionização e, portanto, descargas secundárias espúrias. Os elétrons produzidos por essa ionização se movem em direção ao fio central e são multiplicados no caminho. Esse pulso de carga não está relacionado à radiação a ser detectada e pode acionar uma série de pulsos. Na prática, o término da avalanche é melhorado pelo uso de Técnicas de “extinção” .

As moléculas de gás de têmpera têm uma afinidade mais fraca pelos elétrons do que o gás da câmara; portanto, os átomos ionizados do gás da câmara retiram prontamente elétrons das moléculas de gás de extinção. Assim, as moléculas ionizadas do gás de têmpera atingem a parede da câmara em vez do gás da câmara. As moléculas ionizadas do gás de têmpera são neutralizadas pelo ganho de um elétron, e a energia liberada não causa mais ionização, mas causa a dissociação da molécula. Esse tipo de resfriamento é conhecido como  resfriamento automático  ou  interno , pois os tubos interrompem a descarga sem assistência externa.

Para os contadores Geiger, a têmpera externa, às vezes chamada de “ têmpera ativa ” ou “ têmpera eletrônica ”, também é uma possibilidade. A têmpera eletrônica usa eletrônica simplista de controle de alta velocidade para remover e reaplicar rapidamente a alta tensão entre os eletrodos por um tempo fixo após cada pico de descarga, a fim de aumentar a taxa máxima de contagem e a vida útil do tubo.

Referência Especial: Departamento de Energia, Instrumantação e Controle dos EUA. DOE Fundamentals Handbook, Volume 2, de 2 de junho de 1992.

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.