Como os nêutrons são partículas eletricamente neutras, elas estão sujeitas principalmente a fortes forças nucleares, mas não a forças elétricas. Portanto, os nêutrons não são diretamente ionizantes e geralmente precisam ser convertidos em partículas carregadas antes que possam ser detectados. Geralmente, todo tipo de detector de nêutrons deve estar equipado com conversor (para converter a radiação de nêutrons em radiação detectável comum) e um dos detectores de radiação convencionais (detector de cintilação, detector de gases, detector de semicondutores, etc.).
Contadores proporcionais são frequentemente usados como dispositivo de detecção de partículas carregadas. Nas usinas nucleares, os contadores proporcionais a gás (BF 3 ) são normalmente usados como detectores de faixa de fonte. Esses detectores usam o trifluoreto de boro a gás (BF 3 ) em vez de ar na câmara. Os nêutrons recebidos produzem partículas alfa quando reagem com os átomos de boro no gás detector. A maioria das reações (n, alfa) dos nêutrons térmicos são reações 10B (n, alfa) 7Li acompanhadas por emissão gama de 0,48 MeV .
Além disso, o isótopo boro-10 possui uma alta seção transversal da reação (n, alfa) ao longo de todo o espectro de energia de nêutrons . A partícula alfa causa ionização dentro da câmara e elétrons ejetados causam ionizações secundárias adicionais.
A saída proporcional do contador está na forma de um pulso para cada evento ionizante; portanto, há uma série de pulsos aleatórios variando em magnitude, representando eventos ionizadores de nêutrons e gama. A altura do pulso pode ser de apenas alguns milivolts, o que é muito baixo para ser usado diretamente sem amplificação. O discriminador exclui a passagem de pulsos inferiores a um nível predeterminado. A função do discriminador é excluir pulsos de ruído e gama com magnitude menor que os pulsos de nêutrons.