Un dosimètre thermoluminescent , abrégé en TLD , est un dosimètre à rayonnement passif , qui mesure l’exposition aux rayonnements ionisants en mesurant l’intensité de la lumière visible émise par un cristal sensible dans le détecteur lorsque le cristal est chauffé . L’intensité de la lumière émise est mesurée par le lecteur TLD et dépend de l’ exposition au rayonnement . Dosimètres thermoluminescentsa été inventé en 1954 par le professeur Farrington Daniels de l’Université du Wisconsin-Madison. Les dosimètres TLD sont applicables aux situations où des informations en temps réel ne sont pas nécessaires, mais des enregistrements précis de surveillance des doses cumulées sont souhaités pour la comparaison avec les mesures sur le terrain ou pour évaluer le potentiel d’effets à long terme sur la santé. En dosimétrie, les types de fibre de quartz et de film sont remplacés par les TLD et les EPD (Electronic Personal Dosimeter).
Dosimètre thermoluminescent à neutrons – Neutron TLD
La dosimétrie des neutrons du personnel continue d’être l’un des problèmes dans le domaine de la radioprotection, car aucune méthode unique n’associe la réponse énergétique, la sensibilité, les caractéristiques de dépendance d’orientation et la précision nécessaires pour répondre aux besoins d’un dosimètre personnel.
Les dosimètres à neutrons personnels les plus couramment utilisés à des fins de radioprotection sont les dosimètres thermoluminescents et les dosimètres à albédo . Les deux sont basés sur ce phénomène – la thermoluminescence . À cette fin, le fluorure de lithium ( LiF ) en tant que matériau sensible (puce) est largement utilisé. TLD de fluorure de lithiumest utilisé pour l’exposition gamma et neutronique (indirectement, en utilisant la réaction nucléaire Li-6 (n, alpha)). Les petits cristaux de LiF (fluorure de lithium) sont les dosimètres TLD les plus courants car ils ont les mêmes propriétés d’absorption que les tissus mous. Le lithium a deux isotopes stables, le lithium-6 (7,4%) et le lithium-7 (92,6%). Le Li-6 est l’isotope sensible aux neutrons. Afin d’enregistrer les neutrons, les dosimètres à cristaux LiF peuvent être enrichis en lithium-6 pour améliorer la réaction nucléaire au lithium-6 (n, alpha). L’efficacité du détecteur dépend de l’ énergie des neutrons. Parce que l’interaction des neutrons avec n’importe quel élément dépend fortement de l’énergie, rendre un dosimètre indépendant de l’énergie des neutrons est très difficile. Afin de séparer les neutrons thermiques et les photons, les dosimètres LiF sont principalement utilisés, contenant différents pourcentages de lithium-6. Puce LiF enrichie en lithium-6, qui est très sensible aux neutrons thermiques et puce LiF contenant très peu de lithium-6, qui a une réponse neutronique négligeable.
Le principe des TLD à neutrons est alors similaire à celui des TLD à rayonnement gamma. Dans la puce LiF, il y a des impuretés (par exemple le manganèse ou le magnésium), qui produisent des états de piège pour les électrons énergétiques. L’impureté provoque des pièges dans le réseau cristallin où, après irradiation (en rayonnement alpha), des électrons sont retenus. Lorsque le cristal est réchauffé, les électrons piégés sont libérés et de la lumière est émise. La quantité de lumière est liée à la dose de rayonnement reçue par le cristal.
Dosimètre à neutrons albédo thermoluminiscents
La dosimétrie des neutrons d’albédo est basée sur l’effet de la modération et de la rétrodiffusion des neutrons par le corps humain. Albedo, le mot latin pour «blancheur», a été défini par Lambert comme la fraction de la lumière incidente réfléchie de manière diffuse par une surface. La modération et la rétrodiffusion des neutrons par le corps humain créent un flux de neutrons à la surface du corps dans la gamme d’énergie thermique et intermédiaire. Ces neutrons rétrodiffusés appelés neutrons d’ albédo , peuvent être détectés par un dosimètre (généralement une puce LiF TLD ), placé sur le corps qui est conçu pour détecter les neutrons thermiques . Dosimètres d’albédose sont avérés être les seuls dosimètres capables de mesurer les doses dues aux neutrons sur toute la gamme des énergies. Habituellement, deux types de fluorure de lithium sont utilisés pour séparer les doses apportées par les rayons gamma et les neutrons. Puce LiF enrichie en lithium-6, qui est très sensible aux neutrons thermiques et puce LiF contenant très peu de lithium-6, qui a une réponse neutronique négligeable.
TLD – Principe de fonctionnement
L’aperçu de base suivant explique le fonctionnement d’un TLD :
- Lorsque le rayonnement ionisant traverse le détecteur (puce), la puce absorbe le rayonnement et sa structure change légèrement.
- Dans les matériaux thermoluminescents, les électrons peuvent atteindre la bande de conduction, lorsqu’ils sont excités, par exemple, par des rayonnements ionisants (c’est-à-dire qu’ils doivent obtenir une énergie supérieure à l’ espace E ). Mais dans ce cas, des défauts existent dans le matériau ou des impuretés sont ajoutées pour piéger les électrons dans la bande interdite et les y maintenir.
- Ces électrons piégés représentent l’énergie stockée pendant le temps où les électrons sont retenus et la quantité de cette énergie dépend de l’exposition au rayonnement.
- Afin d’obtenir la dose reçue, la puce TLD doit être chauffée dans ce lecteur TLD . Les électrons piégés retournent à l’état fondamental et émettent des photons de lumière visible. La quantité de lumière émise par rapport à la température est appelée courbe de lueur .
- Une fois la lecture terminée, le TLD est recuit à haute température. Ce processus met essentiellement à zéro le matériau TL en libérant tous les électrons piégés. Le TLD est alors prêt à être réutilisé .
Lecteur TLD
Comme cela a été écrit, l’énergie précédemment absorbée par le rayonnement électromagnétique ou d’autres rayonnements ionisants dans ces matériaux est réémise sous forme de lumière lors du chauffage du matériau. L’intensité de la lumière émise est mesurée par le lecteur TLD et dépend de l’exposition au rayonnement. Un lecteur TLD de base typique contient les composants suivants:
- Chauffage . L’élément chauffant augmente la température du matériau TL
- Tube photomultiplicateur . Le PMT amplifie et mesure le flux lumineux.
- Compteur / enregistreur . L’enregistreur est capable d’afficher et d’enregistrer des données.
Afin d’obtenir la dose reçue, la puce TLD doit être chauffée dans ce lecteur TLD. Les électrons piégés retournent à l’état fondamental et émettent des photons de lumière visible. La quantité de lumière émise par rapport à la température est appelée courbe de lueur . Cette courbe est analysée pour déterminer la dose. Une fois la lecture terminée, le TLD est recuit à haute température. Ce processus met essentiellement à zéro le matériau TL en libérant tous les électrons piégés. Le TLD est alors prêt à être réutilisé. Il existe deux types de lecteurs. Lecteurs automatiques et manuels. Le lecteur automatique de TLD est beaucoup plus compliqué que prévu.
……………………………………………………………………………………………………………………………….
Cet article est basé sur la traduction automatique de l’article original en anglais. Pour plus d’informations, voir l’article en anglais. Pouvez vous nous aider Si vous souhaitez corriger la traduction, envoyez-la à l’adresse: [email protected] ou remplissez le formulaire de traduction en ligne. Nous apprécions votre aide, nous mettrons à jour la traduction le plus rapidement possible. Merci