Facebook Instagram Youtube Twitter

¿Qué es Roentgen Equivalent Man? Rem – Unit – Definition

En protección radiológica, el rem (una abreviatura de Roentgen Equivalent Man) es la unidad no SI de la dosis equivalente, que se usa predominantemente en los EE. UU. El rem representa el efecto biológico equivalente del depósito de cien ergios (un rad) de energía de rayos gamma en un kilogramo de tejido humano. Dosimetría de radiación

roentgen hombre equivalente - remEn protección radiológica, el rem (una abreviatura de Roentgen Equivalent Man ) es la unidad no SI de la dosis equivalente , que se usa predominantemente en los EE. UU. El rem representa el efecto biológico equivalente del depósito de cien ergios ( un rad ) de energía de rayos gamma en un kilogramo de tejido humano. El rem no se deriva de la unidad de exposición , el roentgen . El acrónimo es ahora un artefacto histórico engañoso, ya que 1 roentgen en realidad deposita aproximadamente 0,96 rem en el tejido biológico blando, cuando todos los factores de ponderación equivalen a la unidad.

Como se escribió, el rem se usa para cantidades de dosis de radiación tales como dosis equivalentes y dosis efectiva . La dosis equivalente (símbolo T ) es una cantidad de dosis calculada para órganos individuales (índice T – tejido). La dosis equivalente se basa en la dosis absorbida en un órgano, ajustada para tener en cuenta la efectividad del tipo de radiación . La unidad SI de T es el sievert (Sv) o todavía se usa comúnmente rem (hombre equivalente a roentgen) ( 1 Sv = 100 rem ).

REM y RAD

Para fines de protección radiológica , la dosis absorbida se promedia sobre un órgano o tejido, T, y este promedio de dosis absorbida se pondera para la calidad de la radiación en términos del factor de ponderación de la radiación , w R , para el tipo y la energía de la radiación incidente en el cuerpo. El factor de ponderación de la radiación es un factor adimensional utilizado para determinar la dosis equivalente de la dosis absorbida promediada sobre un tejido u órgano y se basa en el tipo de radiación absorbida. La dosis ponderada resultante se designó como la dosis equivalente de órgano o tejido:

dosis equivalente - ecuación - definición

Una dosis equivalente de un rem representa la cantidad de dosis de radiación que es equivalente, en términos de daño biológico especificado , a un rad de rayos X o rayos gamma . Una dosis de un rem causada por la radiación gamma es equivalente a una deposición de energía de cien ergios de energía en un kilogramo de tejido. Eso significa que un rem es equivalente a un rad de rayos gamma depositados en cierto tejido. Por otro lado, un daño biológico similar (un rem) puede ser causado solo por 1/20 rad de radiación alfa (debido a un alto w R de radiación alfa). Del mismo modo que para los sieverts, los rems no son una unidad de dosis física.. Por ejemplo, una dosis absorbida de 1 rad por partículas alfa conducirá a una dosis equivalente de 20 rems. Esto puede parecer una paradoja. Implica que la energía del campo de radiación incidente en los ergios ha aumentado en un factor de 20, violando así las leyes de Conservación de energía . Sin embargo, éste no es el caso. El rem se deriva de la cantidad física absorbida, pero también tiene en cuenta la efectividad biológica de la radiación, que depende del tipo de radiación y la energía. El factor de ponderación de la radiación hace que el rem no pueda ser una unidad física.

Un rem también es una gran cantidad de dosis equivalente. Una persona que ha absorbido una dosis de 1 rem de todo el cuerpo ha absorbido cien ergios de energía en cada kg de tejido corporal (en el caso de los rayos gamma).

Las dosis equivalentes medidas en la industria y la medicina a menudo tienen dosis más bajas que un rem, y a menudo se usan los siguientes múltiplos:

1 mrem (milirem) = 1E-3 rem

1 krem ​​(kilorem) = 1E3 rem

Las conversiones de las unidades SI a otras unidades son las siguientes:

  • 1 Sv = 100 rem
  • 1 mSv = 100 mrem

Factores de ponderación de radiación – ICRP

Para la radiación de fotones y electrones, el factor de ponderación de la radiación tiene el valor 1 independientemente de la energía de la radiación y para la radiación alfa el valor 20. Para la radiación de neutrones, el valor depende de la energía y es de 5 a 20.

Factores de ponderación de la radiación
Fuente: ICRP, 2003. Efectividad biológica relativa (RBE), factor de calidad (Q) y factor de ponderación de la radiación (wR). Publicación ICRP 92. Ann. ICRP 33 (4).

En 2007, ICRP publicó un nuevo conjunto de factores de ponderación de la radiación (Publicación ICRP 103: Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica). Estos factores se dan a continuación.

Factores de ponderación de la radiación - actual - ICRP
Fuente: ICRP, 2007. Publ. 103: Las Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica.

Como se muestra en la tabla, aw R de 1 es para todas las radiaciones de baja LET, es decir, rayos X y rayos gamma de todas las energías, así como electrones y muones. Una curva suave, considerada una aproximación, se ajustó a los valores de w R en función de la energía de neutrones incidente. Tenga en cuenta que E n es la energía de neutrones en MeV.

factor de ponderación de la radiación - neutrones - ICRP
El factor de ponderación de radiación wR para neutrones introducido en la Publicación 60 (ICRP, 1991) como una función discontinua de la energía de neutrones (- – -) y la modificación propuesta (-).

Así, por ejemplo, una dosis absorbida de 1 rad por partículas alfa conducirá a una dosis equivalente de 20 rem, y se estima que una dosis equivalente de radiación tiene el mismo efecto biológico que una cantidad igual de dosis absorbida de rayos gamma, que es dado un factor de ponderación de 1.

Ver también: Factor de calidad

Ejemplos de dosis en rems

Debemos tener en cuenta que la radiación nos rodea. En, alrededor y sobre el mundo en que vivimos. Es una fuerza de energía natural que nos rodea. Es una parte de nuestro mundo natural que ha estado aquí desde el nacimiento de nuestro planeta. En los siguientes puntos tratamos de expresar enormes rangos de exposición a la radiación, que pueden obtenerse de varias fuentes.

  • 0.005 mrem – Dormir al lado de alguien
  • 0.009 mrem  : viviendo a 30 millas de una planta de energía nuclear durante un año
  • 0.01 mrem  – Comer una banana
  • 0.03 mrem  – Vivir dentro de 50 millas de una planta de energía de carbón durante un año
  • 1 mrem  : dosis diaria promedio recibida del fondo natural
  • 2 mrem  – Radiografía de tórax
  • 4 mrem  : un vuelo en avión de 5 horas
  • 60 mrem  – mamografía
  • 100 mrem  : límite de dosis para miembros individuales del público, dosis efectiva total por año
  • 365 mrem  : dosis media anual recibida del fondo natural
  • 580 mrem  – tomografía computarizada del tórax
  • 1000 mrem  : dosis anual promedio recibida de un entorno natural en Ramsar, Irán
  • 2 000 mrem  : tomografía computarizada de cuerpo completo
  • 17 500 mrem  : dosis anual de radiación natural en una playa de monazita cerca de Guarapari, Brasil.
  • 500 000 mrem  : dosis que mata a un ser humano con un riesgo del 50% en 30 días (DL50 / 30), si la dosis se recibe durante un período muy corto .

Como se puede ver, las dosis bajas son comunes en la vida cotidiana. Los ejemplos anteriores pueden ayudar a ilustrar las magnitudes relativas. Desde el punto de vista de las consecuencias biológicas, es muy importante distinguir entre las dosis recibidas durante períodos cortos y prolongados . Una » dosis aguda » es aquella que ocurre durante un período de tiempo corto y finito, mientras que una » dosis crónica«Es una dosis que continúa durante un período prolongado de tiempo para que se describa mejor mediante una tasa de dosis. Las dosis altas tienden a matar células, mientras que las dosis bajas tienden a dañarlas o cambiarlas. Las dosis bajas distribuidas durante largos períodos de tiempo no causan un problema inmediato a ningún órgano del cuerpo. Los efectos de bajas dosis de radiación ocurren a nivel celular y los resultados pueden no observarse durante muchos años.

Cálculo de la tasa de dosis protegida en rems

Suponga la fuente isotrópica puntual que contiene 1.0 Ci de 137 Cs , que tiene una vida media de 30.2 años . Tenga en cuenta que la relación entre la vida media y la cantidad de radionúclido requerida para dar una actividad de un curie se muestra a continuación. Esta cantidad de material se puede calcular usando λ, que es la constante de descomposición de ciertos nucleidos:

Curie - Unidad de Actividad

Alrededor del 94,6 por ciento se desintegra por emisión beta a un isómero nuclear de bario metaestable : bario-137m. El pico principal de fotones de Ba-137m es 662 keV . Para este cálculo, suponga que todas las desintegraciones pasan por este canal.

Calcule la tasa de dosis primaria de fotones , en gray por hora (Gy.h -1 ), en la superficie externa de un blindaje de plomo de 5 cm de espesor. Luego calcule la tasa de dosis equivalente en sieverts y rems. Suponga que este campo de radiación externo penetra de manera uniforme en todo el cuerpo. La tasa de dosis de fotones primarios descuida todas las partículas secundarias. Suponga que la distancia efectiva de la fuente desde el punto de dosis es de 10 cm . También supondremos que el punto de dosis es tejido blando y que puede ser simulado razonablemente por el agua y usamos el coeficiente de absorción de energía de masa para el agua.

Ver también: atenuación de rayos gamma

Ver también: Blindaje de rayos gamma

Solución:

La tasa de dosis de fotones primarios se atenúa exponencialmente , y la tasa de dosis de fotones primarios, teniendo en cuenta el escudo, viene dada por:

cálculo de la tasa de dosis

Como se puede ver, no tenemos en cuenta la acumulación de radiación secundaria. Si se producen partículas secundarias o si la radiación primaria cambia su energía o dirección, entonces la atenuación efectiva será mucho menor. Esta suposición generalmente subestima la tasa de dosis real, especialmente para protecciones gruesas y cuando el punto de dosis está cerca de la superficie de la protección, pero esta suposición simplifica todos los cálculos. Para este caso, la tasa de dosis real (con la acumulación de radiación secundaria) será más de dos veces mayor.

Para calcular la tasa de dosis absorbida , tenemos que usar en la fórmula:

  • k = 5,76 x 10 -7
  • S = 3.7 x 10 10 s -1
  • E = 0.662 MeV
  • μ t / ρ =  0.0326 cm 2 / g (los valores están disponibles en NIST)
  • μ = 1.289 cm -1 (los valores están disponibles en NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

La tasa de dosis absorbida resultante en grises por hora es entonces:

tasa de dosis absorbida - gray - cálculo

Dado que el factor de ponderación de la radiación para los rayos gamma es igual a uno y hemos asumido el campo de radiación uniforme, podemos calcular directamente la tasa de dosis equivalente a partir de la tasa de dosis absorbida como:

rem - tasa de dosis - cálculo

Si queremos dar cuenta de la acumulación de radiación secundaria, entonces tenemos que incluir el factor de acumulación. La fórmula extendida para la tasa de dosis es entonces:

tasa de dosis absorbida - gris

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

Qué es Sievert – Unidad de dosis equivalente – Definición

En protección radiológica, el sievert es una unidad derivada de dosis equivalente y dosis efectiva. El sievert representa el efecto biológico equivalente del depósito de un joule de energía de rayos gamma en un kilogramo de tejido humano. Dosimetría de radiación

sievert - radiaciónEn protección radiológica, el sievert es una unidad derivada de dosis equivalente y dosis efectiva. El sievert representa el efecto biológico equivalente del depósito de un joule de energía de rayos gamma en un kilogramo de tejido humano. La unidad de sievert es importante en la protección radiológica y lleva el nombre del científico sueco Rolf Sievert, que realizó muchos de los primeros trabajos sobre dosimetría en radioterapia.

Como se escribió, el sievert se usa para cantidades de dosis de radiación, como dosis equivalente y dosis efectiva. La dosis equivalente (símbolo T ) es una cantidad de dosis calculada para órganos individuales (índice T – tejido). La dosis equivalente se basa en la dosis absorbida en un órgano, ajustada para tener en cuenta la efectividad del tipo de radiación . La dosis equivalente se da el símbolo H T . La unidad SI de T es el sievert (Sv) o todavía se usa comúnmente rem (hombre equivalente de roentgen) ( 1 Sv = 100 rem ).

Sievert y Gray

Para fines de protección radiológica , la dosis absorbida se promedia sobre un órgano o tejido, T, y este promedio de dosis absorbida se pondera para la calidad de la radiación en términos del factor de ponderación de la radiación , w R , para el tipo y la energía de la radiación incidente en el cuerpo. El factor de ponderación de la radiación es un factor adimensional utilizado para determinar la dosis equivalente a partir de la dosis absorbida promediada sobre un tejido u órgano y se basa en el tipo de radiación absorbida. La dosis ponderada resultante se designó como la dosis equivalente de órgano o tejido:

dosis equivalente - ecuación - definición

Factores de ponderación de la radiación - actual - ICRP
Tabla de factores de ponderación de la radiación. Fuente: ICRP Publ. 103: Las Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica

Una dosis equivalente de un Sievert representa la cantidad de dosis de radiación que es equivalente, en términos de daño biológico especificado , a un gris de rayos X o rayos gamma . Una dosis de un Sv causada por la radiación gamma es equivalente a una deposición de energía de un julio en un kilogramo de tejido. Eso significa que un sievert es equivalente a un gray de rayos gamma depositados en ciertos tejidos. Por otro lado, un daño biológico similar (un sievert) puede ser causado solo por 1/20 de gray de radiación alfa (debido a un alto w R de radiación alfa). Por lo tanto, el sievert no es una unidad de dosis física. Por ejemplo, una dosis absorbida de 1 Gy por partículas alfa conducirá a una dosis equivalente de 20 Sv. Esto puede parecer una paradoja. Implica que la energía del campo de radiación incidente en julios ha aumentado en un factor de 20, violando así las leyes de Conservación de energía . Sin embargo, éste no es el caso. Sievert se deriva de la cantidad física absorbida, pero también tiene en cuenta la efectividad biológica de la radiación, que depende del tipo de radiación y la energía. El factor de ponderación de la radiación hace que el sievert no pueda ser una unidad física.

Un sievert es una gran cantidad de dosis equivalente. Una persona que ha absorbido una dosis de 1 Sv en todo el cuerpo ha absorbido un julio de energía en cada kg de tejido corporal (en el caso de los rayos gamma).

Las dosis equivalentes  medidas en la industria y la medicina a menudo tienen dosis más bajas que un sievert, y a menudo se usan los siguientes múltiplos:

1 mSv (millisievert) = 1E-3 Sv

1 µSv (microsievert) = 1E-6 Sv

Las conversiones de las unidades SI a otras unidades son las siguientes:

  • 1 Sv = 100 rem
  • 1 mSv = 100 mrem

Factores de ponderación de radiación – ICRP

Para la radiación de fotones y electrones, el factor de ponderación de la radiación tiene el valor 1 independientemente de la energía de la radiación y para la radiación alfa el valor 20. Para la radiación de neutrones, el valor depende de la energía y es de 5 a 20.

Factores de ponderación de la radiación
Fuente: ICRP, 2003. Efectividad biológica relativa (RBE), factor de calidad (Q) y factor de ponderación de la radiación (wR). Publicación ICRP 92. Ann. ICRP 33 (4).

En 2007, ICRP publicó un nuevo conjunto de factores de ponderación de la radiación (Publicación ICRP 103: Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica). Estos factores se dan a continuación.

Factores de ponderación de la radiación - actual - ICRP
Fuente: ICRP, 2007. Publ. 103: Las Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica.

Como se muestra en la tabla, aw R de 1 es para todas las radiaciones de baja LET, es decir, rayos X y rayos gamma de todas las energías, así como electrones y muones. Una curva suave, considerada una aproximación, se ajustó a los valores de w R en función de la energía de neutrones incidente. Tenga en cuenta que E n es la energía de neutrones en MeV.

factor de ponderación de la radiación - neutrones - ICRP
El factor de ponderación de radiación wR para neutrones introducido en la Publicación 60 (ICRP, 1991) como una función discontinua de la energía de neutrones (- – -) y la modificación propuesta (-).

Así, por ejemplo, una dosis absorbida de 1 Gy por partículas alfa conducirá a una dosis equivalente de 20 Sv, y ​​se estima que una dosis equivalente de radiación tiene el mismo efecto biológico que una cantidad igual de dosis absorbida de rayos gamma, que es dado un factor de ponderación de 1.

Ver también: Factor de calidad

Ejemplos de dosis en Sieverts

Debemos tener en cuenta que la radiación nos rodea. En, alrededor y sobre el mundo en que vivimos. Es una fuerza de energía natural que nos rodea. Es una parte de nuestro mundo natural que ha estado aquí desde el nacimiento de nuestro planeta. En los siguientes puntos tratamos de expresar enormes rangos de exposición a la radiación, que pueden obtenerse de varias fuentes.

  • 0.05 µSv – Dormir al lado de alguien
  • 0.09 µSv – Vivir dentro de 30 millas de una planta de energía nuclear por un año
  • 0.1 µSv – Comer una banana
  • 0.3 µSv – Vivir dentro de 50 millas de una central eléctrica de carbón durante un año
  • 10 µSv : dosis diaria promedio recibida del fondo natural
  • 20 µSv – Radiografía de tórax
  • 40 µSv : un vuelo en avión de 5 horas
  • 600 µSv – mamografía
  • 1000 µSv : límite de dosis para miembros individuales del público, dosis efectiva total por año
  • 3 650 µSv : dosis media anual recibida del fondo natural
  • 5 800 µSv : tomografía computarizada del tórax
  • 10 000 µSv : dosis media anual recibida de un entorno natural en Ramsar, Irán
  • 20 000 µSv – tomografía computarizada de cuerpo completo
  • 175 000 µSv – Dosis anual de radiación natural en una playa de monazita cerca de Guarapari, Brasil.
  • 5 000 000 µSv : dosis que mata a un ser humano con un riesgo del 50% en 30 días (LD50 / 30), si la dosis se recibe durante un período muy corto .

Como se puede ver, las dosis bajas son comunes en la vida cotidiana. Los ejemplos anteriores pueden ayudar a ilustrar las magnitudes relativas. Desde el punto de vista de las consecuencias biológicas, es muy importante distinguir entre las dosis recibidas durante períodos cortos y prolongados . Una » dosis aguda » es aquella que ocurre durante un período de tiempo corto y finito, mientras que una » dosis crónica«Es una dosis que continúa durante un período prolongado de tiempo para que se describa mejor mediante una tasa de dosis. Las dosis altas tienden a matar células, mientras que las dosis bajas tienden a dañarlas o cambiarlas. Las dosis bajas distribuidas durante largos períodos de tiempo no causan un problema inmediato a ningún órgano del cuerpo. Los efectos de bajas dosis de radiación ocurren a nivel celular y los resultados pueden no observarse durante muchos años.

Cálculo de la tasa de dosis protegida en Sieverts

Suponga la fuente isotrópica puntual que contiene 1.0 Ci de 137 Cs , que tiene una vida media de 30.2 años . Tenga en cuenta que la relación entre la vida media y la cantidad de radionúclido requerida para dar una actividad de un curie se muestra a continuación. Esta cantidad de material se puede calcular usando λ, que es la constante de descomposición de ciertos nucleidos:

Curie - Unidad de Actividad

Alrededor del 94,6 por ciento se desintegra por emisión beta a un isómero nuclear de bario metaestable : bario-137m. El pico principal de fotones de Ba-137m es 662 keV . Para este cálculo, suponga que todas las desintegraciones pasan por este canal.

Calcule la tasa de dosis primaria de fotones , en gray por hora (Gy.h -1 ), en la superficie externa de un blindaje de plomo de 5 cm de espesor. Luego calcule la tasa de dosis equivalente . Suponga que este campo de radiación externo penetra de manera uniforme en todo el cuerpo. La tasa de dosis de fotones primarios descuida todas las partículas secundarias. Suponga que la distancia efectiva de la fuente desde el punto de dosis es de 10 cm . También supondremos que el punto de dosis es tejido blando y que puede ser simulado razonablemente por el agua y usamos el coeficiente de absorción de energía de masa para el agua.

Ver también: atenuación de rayos gamma

Ver también: Blindaje de rayos gamma

Solución:

La tasa de dosis de fotones primarios se atenúa exponencialmente , y la tasa de dosis de fotones primarios, teniendo en cuenta el escudo, viene dada por:

cálculo de la tasa de dosis

Como se puede ver, no tenemos en cuenta la acumulación de radiación secundaria. Si se producen partículas secundarias o si la radiación primaria cambia su energía o dirección, entonces la atenuación efectiva será mucho menor. Esta suposición generalmente subestima la tasa de dosis real, especialmente para protecciones gruesas y cuando el punto de dosis está cerca de la superficie de la protección, pero esta suposición simplifica todos los cálculos. Para este caso, la tasa de dosis real (con la acumulación de radiación secundaria) será más de dos veces mayor.

Para calcular la tasa de dosis absorbida , tenemos que usar en la fórmula:

  • k = 5,76 x 10 -7
  • S = 3.7 x 10 10 s -1
  • E = 0.662 MeV
  • μ t / ρ =  0.0326 cm 2 / g (los valores están disponibles en NIST)
  • μ = 1.289 cm -1 (los valores están disponibles en NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

La tasa de dosis absorbida resultante en grises por hora es entonces:

tasa de dosis absorbida - gray - cálculo

Como el factor de ponderación de la radiación para los rayos gamma es igual a uno y hemos asumido el campo de radiación uniforme, podemos calcular directamente la tasa de dosis equivalente a partir de la tasa de dosis absorbida como:

dosis equivalente - sievert - cálculo

Si queremos dar cuenta de la acumulación de radiación secundaria, entonces tenemos que incluir el factor de acumulación. La fórmula extendida para la tasa de dosis es entonces:

tasa de dosis absorbida - gris

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la dosis equivalente? Fórmula – Ecuación – Definición

Fórmula de dosis equivalente – Ecuación. Este artículo resume las fórmulas y ecuaciones clave, que pueden usarse para cálculos de dosis equivalentes. Dosimetría de radiación

Factores de ponderación de la radiación - actual - ICRPLa dosis equivalente (símbolo T ) es una cantidad de dosis calculada para órganos individuales (índice T – tejido). La dosis equivalente se basa en la dosis absorbida en un órgano, ajustada para tener en cuenta la efectividad del tipo de radiación . La dosis equivalente se da el símbolo H T . La unidad SI de T es el sievert (Sv) o todavía se usa comúnmente rem (hombre equivalente a roentgen) ( 1 Sv = 100 rem ). La dosis ponderada se designó como la dosis equivalente de órgano o tejido:

dosis equivalente - ecuación - definición

dosis equivalente - definición

Una dosis de  un Sv  causada por la radiación gamma es equivalente a una deposición de energía de un julio en un kilogramo de tejido. Eso significa que un sievert es equivalente a un gray de rayos gamma depositados en ciertos tejidos. Por otro lado, un daño biológico similar (un sievert) puede ser causado solo por 1/20 gray de radiación alfa.

Un sievert es una gran cantidad de dosis equivalente. Una persona que ha absorbido una dosis de 1 Sv en todo el cuerpo ha absorbido un julio de energía en cada kg de tejido corporal (en el caso de los rayos gamma).

Las dosis equivalentes  medidas en la industria y la medicina a menudo tienen dosis más bajas que un sievert, y a menudo se usan los siguientes múltiplos:

1 mSv (millisievert) = 1E-3 Sv

1 µSv (microsievert) = 1E-6 Sv

Las conversiones de las unidades SI a otras unidades son las siguientes:

  • 1 Sv = 100 rem
  • 1 mSv = 100 mrem

Dosis equivalente

La tasa de dosis equivalente es la tasa a la que se recibe una dosis equivalente. Es una medida de la intensidad de la dosis de radiación (o fuerza). Por lo tanto, la tasa de dosis equivalente se define como:

tasa de dosis equivalente - definición

En unidades convencionales, se mide en mSv / seg ,  Sv / hr, mrem / sec o rem / hr. Dado que la cantidad de exposición a la radiación depende directamente (linealmente) del tiempo que las personas pasan cerca de la fuente de radiación, la dosis absorbida es igual a la intensidad del campo de radiación (tasa de dosis) multiplicado por el tiempo de permanencia en ese campo. El ejemplo anterior indica que una persona podría esperar recibir una dosis de 25 milirems al permanecer en un campo de 50 milirems / hora durante treinta minutos.

Cálculo de la tasa de dosis protegida

Suponga la fuente isotrópica puntual que contiene 1.0 Ci de 137 Cs , que tiene una vida media de 30.2 años . Tenga en cuenta que la relación entre la vida media y la cantidad de radionúclido requerida para dar una actividad de un curie se muestra a continuación. Esta cantidad de material se puede calcular usando λ, que es la constante de descomposición de ciertos nucleidos:

Curie - Unidad de Actividad

Alrededor del 94,6 por ciento se desintegra por emisión beta a un isómero nuclear de bario metaestable : bario-137m. El pico principal de fotones de Ba-137m es 662 keV . Para este cálculo, suponga que todas las desintegraciones pasan por este canal.

Calcule la tasa de dosis primaria de fotones , en gray por hora (Gy.h -1 ), en la superficie externa de un blindaje de plomo de 5 cm de espesor. Luego calcule la tasa de dosis equivalente . Suponga que este campo de radiación externo penetra de manera uniforme en todo el cuerpo. La tasa de dosis de fotones primarios descuida todas las partículas secundarias. Suponga que la distancia efectiva de la fuente desde el punto de dosis es de 10 cm . También supondremos que el punto de dosis es tejido blando y que puede ser simulado razonablemente por el agua y usamos el coeficiente de absorción de energía de masa para el agua.

Ver también: atenuación de rayos gamma

Ver también: Blindaje de rayos gamma

Solución:

La tasa de dosis de fotones primarios se atenúa exponencialmente , y la tasa de dosis de fotones primarios, teniendo en cuenta el escudo, viene dada por:

cálculo de la tasa de dosis

Como se puede ver, no tenemos en cuenta la acumulación de radiación secundaria. Si se producen partículas secundarias o si la radiación primaria cambia su energía o dirección, entonces la atenuación efectiva será mucho menor. Esta suposición generalmente subestima la tasa de dosis real, especialmente para protecciones gruesas y cuando el punto de dosis está cerca de la superficie de la protección, pero esta suposición simplifica todos los cálculos. Para este caso, la tasa de dosis real (con la acumulación de radiación secundaria) será más de dos veces mayor.

Para calcular la tasa de dosis absorbida , tenemos que usar en la fórmula:

  • k = 5,76 x 10 -7
  • S = 3.7 x 10 10 s -1
  • E = 0.662 MeV
  • μ t / ρ =  0.0326 cm 2 / g (los valores están disponibles en NIST)
  • μ = 1.289 cm -1 (los valores están disponibles en NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

La tasa de dosis absorbida resultante en grises por hora es entonces:

tasa de dosis absorbida - gray - cálculo

Como el factor de ponderación de la radiación para los rayos gamma es igual a uno y hemos asumido el campo de radiación uniforme, podemos calcular directamente la tasa de dosis equivalente a partir de la tasa de dosis absorbida como:

dosis equivalente - sievert - cálculo

Si queremos dar cuenta de la acumulación de radiación secundaria, entonces tenemos que incluir el factor de acumulación. La fórmula extendida para la tasa de dosis es entonces:

tasa de dosis absorbida - gris

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es el factor de ponderación de la radiación? Definición

En la protección radiológica, el factor de ponderación de la radiación es un factor adimensional utilizado para determinar la dosis equivalente de la dosis absorbida promediada sobre un tejido u órgano y se basa en el tipo de radiación absorbida. Dosimetría de radiación

Factores de ponderación de la radiación - actual - ICRPLa dosis equivalente (símbolo T ) es una cantidad de dosis calculada para órganos individuales (índice T – tejido). La dosis equivalente se basa en la dosis absorbida en un órgano, ajustada para tener en cuenta la efectividad del tipo de radiación . La dosis equivalente se da el símbolo H T . La unidad SI de T es el sievert (Sv) o todavía se usa comúnmente rem (hombre equivalente a roentgen) ( 1 Sv = 100 rem ). La unidad de sievert lleva el nombre del científico sueco Rolf Sievert, que realizó muchos de los primeros trabajos sobre dosimetría en radioterapia.

Como se escribió, para fines de protección radiológica , la dosis absorbida se promedia sobre un órgano o tejido, T, y este promedio de dosis absorbida se pondera para la calidad de la radiación en términos del factor de ponderación de la radiación , w R , para el tipo y la energía de radiación incidente en el cuerpo. El factor de ponderación de la radiación es un factor adimensional utilizado para determinar la dosis equivalente a partir de la dosis absorbida promediada sobre un tejido u órgano y se basa en el tipo de radiación absorbida. La dosis ponderada resultante se designó como la dosis equivalente de órgano o tejido:

dosis equivalente - ecuación - definición

dosis equivalente - definición

De la dosis absorbida a la dosis equivalente

Tenga en cuenta que el sievert no es una unidad de dosis física . Por ejemplo, una dosis absorbida de 1 Gy por partículas alfa conducirá a una dosis equivalente de 20 Sv. Esto puede parecer una paradoja. Implica que la energía del campo de radiación incidente en julios ha aumentado en un factor de 20, violando así las leyes de Conservación de energía . Sin embargo, éste no es el caso. Sievert se deriva de la cantidad física absorbida, pero también tiene en cuenta la efectividad biológica de la radiación, que depende del tipo de radiación y la energía. El factor de ponderación de la radiación hace que el sievert no pueda ser una unidad física.

Como se escribió, cada tipo de radiación interactúa con la materia de una manera diferente y causa diferentes daños biológicos. Por ejemplo, las partículas cargadas con altas energías pueden ionizar directamente los átomos. Por otro lado, las partículas eléctricamente neutras interactúan solo indirectamente, pero también pueden transferir parte o la totalidad de sus energías a la materia. Sin duda simplificaría las cosas si los efectos biológicosde radiación fueron directamente proporcionales a la dosis absorbida. Desafortunadamente, los efectos biológicos dependen también de la forma en que la dosis absorbida se distribuye a lo largo de la trayectoria de la radiación. Los estudios han demostrado que la radiación alfa y de neutrones causa un daño biológico mayor para una deposición de energía dada por kg de tejido que la radiación gamma. Se descubrió que los efectos biológicos de cualquier radiación aumentan con la transferencia de energía lineal (LET). En resumen, el daño biológico de la radiación de alto LET ( partículas alfa , protones o neutrones ) es mucho mayor que el de la radiación de bajo LET ( rayos gamma) Esto se debe a que el tejido vivo puede reparar más fácilmente el daño de la radiación que se extiende sobre un área grande que la que se concentra en un área pequeña. Debido a que se produce más daño biológico por la misma dosis física (es decir, la misma energía depositada por unidad de masa de tejido), un gray de radiación alfa o de neutrones es más dañino que un gray de radiación gamma. Este hecho de que las radiaciones de diferentes tipos (y energías) dan diferentes efectos biológicos para la misma dosis absorbida se describe en términos de factores conocidos como la efectividad biológica relativa (RBE) y el factor de ponderación de la radiación (w R ).

Factor de ponderación de radiación

En la protección radiológica, el factor de ponderación de la radiación es un factor adimensional utilizado para determinar la dosis equivalente de la dosis absorbida promediada sobre un tejido u órgano y se basa en el tipo de radiación absorbida. En el pasado, se utilizó un factor similar conocido como factor de calidad para este propósito. El factor de ponderación de la radiación es una estimación de la efectividad por dosis unitaria de la radiación dada en relación con el estándar de baja LET.

Antes de 1990, las cantidades equivalentes a la dosis se definían en términos de un factor de calidad, Q (L), que se aplicaba a la dosis absorbida en un punto para tener en cuenta las diferencias en los efectos de los diferentes tipos de radiación. En sus recomendaciones de 1990, la CIPR introdujo un concepto modificado. Para fines de protección radiológica, la dosis absorbida se promedia sobre un órgano o tejido, T, y este promedio de dosis absorbida se pondera para la calidad de la radiación en términos del factor de ponderación de la radiación, w R , para el tipo y la energía de la radiación incidente en el cuerpo.

La razón para reemplazar el factor de calidad, es decir, la relación Q – L, con los valores de w R en la definición de las dosis equivalentes a los órganos y la dosis efectiva fue que la Comisión creía:

«que el detalle y la precisión inherentes al uso de una relación formal Q-L para modificar la dosis absorbida para reflejar la mayor probabilidad de detrimento resultante de la exposición a componentes de radiación con alto LET no se justifica debido a las incertidumbres en la información radiológica».

Cabe destacar que estos dos factores, el factor de ponderación de la radiación y el factor de calidad están restringidos al rango de dosis de interés para la protección contra la radiación, es decir, a la magnitud general de los límites de dosis. En circunstancias especiales donde se manejan dosis más altas que pueden causar efectos deterministas, se aplican los valores de RBE relevantes para obtener una dosis ponderada.

Referencia especial : ICRP, 2003. Efectividad biológica relativa (RBE), factor de calidad ( Q ) y factor de ponderación de la radiación ( R ). Publicación ICRP 92. Ann. ICRP 33 (4).

Factores de ponderación de radiación – ICRP

Para la radiación de fotones y electrones, el factor de ponderación de la radiación tiene el valor 1 independientemente de la energía de la radiación y para la radiación alfa el valor 20. Para la radiación de neutrones, el valor depende de la energía y es de 5 a 20.

Factores de ponderación de la radiación
Fuente: ICRP, 2003. Efectividad biológica relativa (RBE), factor de calidad (Q) y factor de ponderación de la radiación (wR). Publicación ICRP 92. Ann. ICRP 33 (4).

En 2007, ICRP publicó un nuevo conjunto de factores de ponderación de la radiación (Publicación ICRP 103: Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica). Estos factores se dan a continuación.

Factores de ponderación de la radiación - actual - ICRP
Fuente: ICRP, 2007. Publ. 103: Las Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica.

Como se muestra en la tabla, aw R de 1 es para todas las radiaciones de baja LET, es decir, rayos X y rayos gamma de todas las energías, así como electrones y muones. Una curva suave, considerada una aproximación, se ajustó a los valores de w R en función de la energía de neutrones incidente. Tenga en cuenta que E n es la energía de neutrones en MeV.

factor de ponderación de la radiación - neutrones - ICRP
El factor de ponderación de radiación wR para neutrones introducido en la Publicación 60 (ICRP, 1991) como una función discontinua de la energía de neutrones (- – -) y la modificación propuesta (-).

Así, por ejemplo, una dosis absorbida de 1 Gy por partículas alfa conducirá a una dosis equivalente de 20 Sv, y ​​se estima que una dosis equivalente de radiación tiene el mismo efecto biológico que una cantidad igual de dosis absorbida de rayos gamma, que es dado un factor de ponderación de 1.

Factor de calidad

factor de calidad - radiaciónEl factor de calidad de un tipo de radiación se define como la relación entre el daño biológico producido por la absorción de 1 Gy de esa radiación y el daño biológico producido por 1 Gy de rayos X o rayos gamma.

La Q de cierto tipo de radiación está relacionada con la densidad de las pistas de iones que deja en el tejido. Los factores de calidad para los diversos tipos de radiación se enumeran en la tabla.

Estos factores de calidad están restringidos al rango de dosis de interés para la protección radiológica, es decir, a la magnitud general de los límites de dosis. En circunstancias especiales donde se manejan dosis más altas que pueden causar efectos deterministas, se aplican los valores relevantes de RBE para obtener una dosis ponderada.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es el cálculo de la dosis equivalente? Problema – Definición

Calcule la tasa de dosis primaria de fotones, en gray por hora (Gy.h-1), en la superficie externa de un protector de plomo de 5 cm de espesor. Luego calcule la tasa de dosis equivalente. Suponga que este campo de radiación externo penetra de manera uniforme en todo el cuerpo. Dosimetría de radiación

dosis equivalente - definiciónLa dosis equivalente (símbolo T ) es una cantidad de dosis calculada para órganos individuales (índice T – tejido). La dosis equivalente se basa en la dosis absorbida en un órgano, ajustada para tener en cuenta la efectividad del tipo de radiación . La dosis equivalente se da el símbolo H T . La unidad SI de T es el sievert (Sv) o todavía se usa comúnmente rem (hombre equivalente de roentgen) ( 1 Sv = 100 rem ). La unidad de sievert lleva el nombre del científico sueco Rolf Sievert, que realizó muchos de los primeros trabajos sobre dosimetría en radioterapia.

 

Cálculo de la tasa de dosis equivalente

Suponga la fuente isotrópica puntual que contiene 1.0 Ci de 137 Cs , que tiene una vida media de 30.2 años . Tenga en cuenta que la relación entre la vida media y la cantidad de radionúclido requerida para dar una actividad de un curie se muestra a continuación. Esta cantidad de material se puede calcular usando λ, que es la constante de descomposición de ciertos nucleidos:

Curie - Unidad de Actividad

Alrededor del 94,6 por ciento se desintegra por emisión beta a un isómero nuclear de bario metaestable : bario-137m. El pico principal de fotones de Ba-137m es 662 keV . Para este cálculo, suponga que todas las desintegraciones pasan por este canal.

Calcule la tasa de dosis primaria de fotones , en gray por hora (Gy.h -1 ), en la superficie externa de un protector de plomo de 5 cm de espesor. Luego calcule la tasa de dosis equivalente . Suponga que este campo de radiación externo penetra de manera uniforme en todo el cuerpo. La tasa de dosis de fotones primarios descuida todas las partículas secundarias. Suponga que la distancia efectiva de la fuente desde el punto de dosis es de 10 cm . También supondremos que el punto de dosis es tejido blando y que el agua puede simularlo razonablemente, y usamos el coeficiente de absorción de energía de masa para el agua.

Ver también: atenuación de rayos gamma

Ver también: Blindaje de rayos gamma

Solución:

La tasa de dosis de fotones primarios se atenúa exponencialmente , y la tasa de dosis de fotones primarios, teniendo en cuenta el escudo, viene dada por:

cálculo de la tasa de dosis

Como se puede ver, no tenemos en cuenta la acumulación de radiación secundaria. Si se producen partículas secundarias o si la radiación primaria cambia su energía o dirección, entonces la atenuación efectiva será mucho menor. Esta suposición generalmente subestima la tasa de dosis real, especialmente para protecciones gruesas y cuando el punto de dosis está cerca de la superficie de la protección, pero esta suposición simplifica todos los cálculos. Para este caso, la tasa de dosis real (con la acumulación de radiación secundaria) será más de dos veces mayor.

Para calcular la tasa de dosis absorbida , tenemos que usar en la fórmula:

  • k = 5,76 x 10 -7
  • S = 3.7 x 10 10 s -1
  • E = 0.662 MeV
  • μ t / ρ =  0.0326 cm 2 / g (los valores están disponibles en NIST)
  • μ = 1.289 cm -1 (los valores están disponibles en NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

La tasa de dosis absorbida resultante en grises por hora es entonces:

tasa de dosis absorbida - gray - cálculo

Como el factor de ponderación de la radiación para los rayos gamma es igual a uno y hemos asumido el campo de radiación uniforme, podemos calcular directamente la tasa de dosis equivalente a partir de la tasa de dosis absorbida como:

dosis equivalente - sievert - cálculo

Si queremos dar cuenta de la acumulación de radiación secundaria, entonces tenemos que incluir el factor de acumulación. La fórmula extendida para la tasa de dosis es entonces:

tasa de dosis absorbida - gris

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la dosis equivalente? Definición

La dosis equivalente (símbolo HT) es una cantidad de dosis calculada para órganos individuales (tejido índice T). La dosis equivalente se basa en la dosis absorbida en un órgano, ajustada para tener en cuenta la efectividad del tipo de radiación. Dosimetría de radiación

Factores de ponderación de la radiación - actual - ICRPLa dosis equivalente (símbolo T ) es una cantidad de dosis calculada para órganos individuales (índice T – tejido). La dosis equivalente se basa en la dosis absorbida en un órgano, ajustada para tener en cuenta la efectividad del tipo de radiación . La dosis equivalente se da el símbolo H T . La unidad SI de T es el sievert (Sv) o todavía se usa comúnmente rem (hombre equivalente a roentgen) ( 1 Sv = 100 rem ). La unidad de sievert lleva el nombre del científico sueco Rolf Sievert, que realizó muchos de los primeros trabajos sobre dosimetría en radioterapia.

Como se escribió, para fines de protección radiológica , la dosis absorbida se promedia sobre un órgano o tejido, T, y este promedio de dosis absorbida se pondera para la calidad de la radiación en términos del factor de ponderación de la radiación , w R , para el tipo y la energía de radiación incidente en el cuerpo. El factor de ponderación de la radiación es un factor adimensional utilizado para determinar la dosis equivalente de la dosis absorbida promediada sobre un tejido u órgano y se basa en el tipo de radiación absorbida. La dosis ponderada resultante se designó como la dosis equivalente de órgano o tejido:

dosis equivalente - ecuación - definición

dosis equivalente - definiciónUna dosis equivalente de un Sievert representa la cantidad de dosis de radiación que es equivalente, en términos de daño biológico especificado , a un gris de rayos X o rayos gamma . La dosis equivalente es una cantidad no física (w R se deriva de consecuencias biológicas de la radiación ionizante), ampliamente utilizado en la dosimetría medida por dosímetros. La dosis equivalente es designada por la ICRP como una «cantidad limitante»; especificar los límites de exposición para garantizar que «la aparición de efectos estocásticos sobre la salud se mantenga por debajo de niveles inaceptables y que se eviten las reacciones tisulares».

La dosis equivalente , H T , se utiliza para evaluar el riesgo de salud estocástico debido a los campos de radiación externos que penetran uniformemente en todo el cuerpo. Sin embargo, necesita más correcciones cuando el campo se aplica solo a parte (s) del cuerpo, o de manera no uniforme para medir el riesgo de salud estocástico general para el cuerpo. Para permitir esto, se debe utilizar una cantidad de dosis adicional llamada dosis efectiva . La dosis efectiva se define como la suma de las dosis equivalentes a órganos ponderadas por los factores de ponderación de órganos ICRP, w T , que tiene en cuenta la sensibilidad variable de los diferentes órganos y tejidos a la radiación.

Unidades de dosis equivalente :

  • Sievert . El sievert es una unidad derivada de dosis equivalente y dosis efectiva y representa el efecto biológico equivalente del depósito de un joule de energía de rayos gamma en un kilogramo de tejido humano.
  • REM . El rem (una abreviatura de R oentgen E quivalent M an) es la unidad no SI de la dosis equivalente, que se usa predominantemente en los EE. UU. Es un término para la equivalencia de dosis e iguala el daño biológico que sería causado por un rad de dosis.

Una dosis de  un Sv  causada por la radiación gamma es equivalente a una deposición de energía de un julio en un kilogramo de tejido. Eso significa que un sievert es equivalente a un gray de rayos gamma depositados en ciertos tejidos. Por otro lado, un daño biológico similar (un sievert) puede ser causado solo por 1/20 gray de radiación alfa.

Un sievert es una gran cantidad de dosis equivalente. Una persona que ha absorbido una dosis de 1 Sv en todo el cuerpo ha absorbido un julio de energía en cada kg de tejido corporal (en el caso de los rayos gamma).

Las dosis equivalentes  medidas en la industria y la medicina a menudo tienen dosis más bajas que un sievert, y a menudo se usan los siguientes múltiplos:

1 mSv (millisievert) = 1E-3 Sv

1 µSv (microsievert) = 1E-6 Sv

Las conversiones de las unidades SI a otras unidades son las siguientes:

  • 1 Sv = 100 rem
  • 1 mSv = 100 mrem

De la dosis absorbida a la dosis equivalente

Tenga en cuenta que el sievert no es una unidad de dosis física . Por ejemplo, una dosis absorbida de 1 Gy por partículas alfa conducirá a una dosis equivalente de 20 Sv. Esto puede parecer una paradoja. Implica que la energía del campo de radiación incidente en julios ha aumentado en un factor de 20, violando así las leyes de Conservación de energía . Sin embargo, éste no es el caso. Sievert se deriva de la cantidad física absorbida, pero también tiene en cuenta la efectividad biológica de la radiación, que depende del tipo de radiación y la energía. El factor de ponderación de la radiación hace que el sievert no pueda ser una unidad física.

Como se escribió, cada tipo de radiación interactúa con la materia de una manera diferente y causa diferentes daños biológicos. Por ejemplo, las partículas cargadas con altas energías pueden ionizar átomos directamente. Por otro lado, las partículas eléctricamente neutras interactúan solo indirectamente, pero también pueden transferir parte o la totalidad de sus energías a la materia. Sin duda simplificaría las cosas si los efectos biológicosde radiación fueron directamente proporcionales a la dosis absorbida. Desafortunadamente, los efectos biológicos dependen también de la forma en que la dosis absorbida se distribuye a lo largo de la trayectoria de la radiación. Los estudios han demostrado que la radiación alfa y de neutrones causa un daño biológico mayor para una deposición de energía dada por kg de tejido que la radiación gamma. Se descubrió que los efectos biológicos de cualquier radiación aumentan con la transferencia de energía lineal (LET). En resumen, el daño biológico de la radiación de alto LET ( partículas alfa , protones o neutrones ) es mucho mayor que el de la radiación de bajo LET ( rayos gamma) Esto se debe a que el tejido vivo puede reparar más fácilmente el daño de la radiación que se extiende sobre un área grande que la que se concentra en un área pequeña. Debido a que se produce más daño biológico por la misma dosis física (es decir, la misma energía depositada por unidad de masa de tejido), un gray de radiación alfa o de neutrones es más dañino que un gray de radiación gamma. Este hecho de que las radiaciones de diferentes tipos (y energías) dan diferentes efectos biológicos para la misma dosis absorbida se describe en términos de factores conocidos como la efectividad biológica relativa (RBE) y el factor de ponderación de la radiación (w R ).

Factor de ponderación de radiación

En la protección radiológica, el factor de ponderación de la radiación es un factor adimensional utilizado para determinar la dosis equivalente a partir de la dosis absorbida promediada sobre un tejido u órgano y se basa en el tipo de radiación absorbida. En el pasado, se utilizó un factor similar conocido como factor de calidad para este propósito. El factor de ponderación de la radiación es una estimación de la efectividad por dosis unitaria de la radiación dada en relación con el estándar de baja LET.

Antes de 1990, las cantidades equivalentes a la dosis se definían en términos de un factor de calidad, Q (L), que se aplicaba a la dosis absorbida en un punto para tener en cuenta las diferencias en los efectos de los diferentes tipos de radiación. En sus recomendaciones de 1990, la CIPR introdujo un concepto modificado. Para fines de protección radiológica, la dosis absorbida se promedia sobre un órgano o tejido, T, y este promedio de dosis absorbida se pondera para la calidad de la radiación en términos del factor de ponderación de la radiación, w R , para el tipo y la energía de la radiación incidente en el cuerpo.

La razón para la sustitución del factor de calidad, es decir, la relación Q-L, con w R valores en la definición de las dosis de órganos-equivalente y la dosis eficaz es que la Comisión cree:

«que el detalle y la precisión inherentes al uso de una relación formal Q-L para modificar la dosis absorbida para reflejar la mayor probabilidad de detrimento resultante de la exposición a componentes de radiación con un alto LET no se justifica debido a las incertidumbres en la información radiológica».

Cabe destacar que estos dos factores, el factor de ponderación de la radiación y el factor de calidad están restringidos al rango de dosis de interés para la protección contra la radiación, es decir, a la magnitud general de los límites de dosis. En circunstancias especiales donde se manejan dosis más altas que pueden causar efectos deterministas, se aplican los valores relevantes de RBE para obtener una dosis ponderada.

Referencia especial : ICRP, 2003. Efectividad biológica relativa (RBE), factor de calidad ( Q ) y factor de ponderación de la radiación ( R ). Publicación ICRP 92. Ann. ICRP 33 (4).

Factores de ponderación de radiación – ICRP

Para la radiación de fotones y electrones, el factor de ponderación de la radiación tiene el valor 1 independientemente de la energía de la radiación y para la radiación alfa el valor 20. Para la radiación de neutrones, el valor depende de la energía y es de 5 a 20.

Factores de ponderación de la radiación
Fuente: ICRP, 2003. Efectividad biológica relativa (RBE), factor de calidad (Q) y factor de ponderación de la radiación (wR). Publicación ICRP 92. Ann. ICRP 33 (4).

En 2007, ICRP publicó un nuevo conjunto de factores de ponderación de la radiación (Publicación ICRP 103: Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica). Estos factores se dan a continuación.

Factores de ponderación de la radiación - actual - ICRP
Fuente: ICRP, 2007. Publ. 103: Las Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica.

Como se muestra en la tabla, aw R de 1 es para todas las radiaciones de baja LET, es decir, rayos X y rayos gamma de todas las energías, así como electrones y muones. Una curva suave, considerada una aproximación, se ajustó a los valores de w R en función de la energía de neutrones incidente. Tenga en cuenta que E n es la energía de neutrones en MeV.

factor de ponderación de la radiación - neutrones - ICRP
El factor de ponderación de radiación wR para neutrones introducido en la Publicación 60 (ICRP, 1991) como una función discontinua de la energía de neutrones (- – -) y la modificación propuesta (-).

Así, por ejemplo, una dosis absorbida de 1 Gy por partículas alfa conducirá a una dosis equivalente de 20 Sv, y ​​se estima que una dosis equivalente de radiación tiene el mismo efecto biológico que una cantidad igual de dosis absorbida de rayos gamma, que es dado un factor de ponderación de 1.

Factor de calidad

factor de calidad - radiaciónEl factor de calidad de un tipo de radiación se define como la relación entre el daño biológico producido por la absorción de 1 Gy de esa radiación y el daño biológico producido por 1 Gy de rayos X o rayos gamma.

La Q de cierto tipo de radiación está relacionada con la densidad de las pistas de iones que deja en el tejido. Los factores de calidad para los diversos tipos de radiación se enumeran en la tabla.

Estos factores de calidad están restringidos al rango de dosis de interés para la protección radiológica, es decir, a la magnitud general de los límites de dosis. En circunstancias especiales donde se manejan dosis más altas que pueden causar efectos deterministas, se aplican los valores relevantes de RBE para obtener una dosis ponderada.

Ejemplos de dosis en Sieverts

Debemos tener en cuenta que la radiación nos rodea. En, alrededor y sobre el mundo en que vivimos. Es una fuerza de energía natural que nos rodea. Es una parte de nuestro mundo natural que ha estado aquí desde el nacimiento de nuestro planeta. En los siguientes puntos tratamos de expresar enormes rangos de exposición a la radiación, que pueden obtenerse de varias fuentes.

  • 0.05 µSv – Dormir al lado de alguien
  • 0.09 µSv – Vivir dentro de 30 millas de una planta de energía nuclear por un año
  • 0.1 µSv – Comer una banana
  • 0.3 µSv – Vivir dentro de 50 millas de una central eléctrica de carbón durante un año
  • 10 µSv : dosis diaria promedio recibida del fondo natural
  • 20 µSv – Radiografía de tórax
  • 40 µSv : un vuelo en avión de 5 horas
  • 600 µSv – mamografía
  • 1000 µSv : límite de dosis para miembros individuales del público, dosis efectiva total por año
  • 3 650 µSv : dosis media anual recibida del fondo natural
  • 5 800 µSv : tomografía computarizada del tórax
  • 10 000 µSv : dosis media anual recibida de un entorno natural en Ramsar, Irán
  • 20 000 µSv – tomografía computarizada de cuerpo completo
  • 175 000 µSv – Dosis anual de radiación natural en una playa de monazita cerca de Guarapari, Brasil.
  • 5 000 000 µSv : dosis que mata a un ser humano con un riesgo del 50% en 30 días (LD50 / 30), si la dosis se recibe durante un período muy corto .

Como se puede ver, las dosis bajas son comunes en la vida cotidiana. Los ejemplos anteriores pueden ayudar a ilustrar las magnitudes relativas. Desde el punto de vista de las consecuencias biológicas, es muy importante distinguir entre las dosis recibidas durante períodos cortos y prolongados . Una » dosis aguda » es aquella que ocurre durante un período de tiempo corto y finito, mientras que una » dosis crónica«Es una dosis que continúa durante un período prolongado de tiempo para que se describa mejor mediante una tasa de dosis. Las dosis altas tienden a matar células, mientras que las dosis bajas tienden a dañarlas o cambiarlas. Las dosis bajas distribuidas durante largos períodos de tiempo no causan un problema inmediato a ningún órgano del cuerpo. Los efectos de bajas dosis de radiación ocurren a nivel celular y los resultados pueden no observarse durante muchos años.

Dosis equivalente

La tasa de dosis equivalente es la tasa a la que se recibe una dosis equivalente. Es una medida de la intensidad de la dosis de radiación (o fuerza). Por lo tanto, la tasa de dosis equivalente se define como:

tasa de dosis equivalente - definición

En unidades convencionales, se mide en mSv / seg ,  Sv / hr, mrem / sec o rem / hr. Dado que la cantidad de exposición a la radiación depende directamente (linealmente) del tiempo que las personas pasan cerca de la fuente de radiación, la dosis absorbida es igual a la intensidad del campo de radiación (tasa de dosis) multiplicado por el tiempo de permanencia en ese campo. El ejemplo anterior indica que una persona podría esperar recibir una dosis de 25 milirems al permanecer en un campo de 50 milirems / hora durante treinta minutos.

Cálculo de la tasa de dosis protegida

Suponga la fuente isotrópica puntual que contiene 1.0 Ci de 137 Cs , que tiene una vida media de 30.2 años . Tenga en cuenta que la relación entre la vida media y la cantidad de radionúclido requerida para dar una actividad de un curie se muestra a continuación. Esta cantidad de material se puede calcular usando λ, que es la constante de descomposición de ciertos nucleidos:

Curie - Unidad de Actividad

Alrededor del 94,6 por ciento se desintegra por emisión beta a un isómero nuclear de bario metaestable : bario-137m. El pico principal de fotones de Ba-137m es 662 keV . Para este cálculo, suponga que todas las desintegraciones pasan por este canal.

Calcule la tasa de dosis primaria de fotones , en gray por hora (Gy.h -1 ), en la superficie externa de un blindaje de plomo de 5 cm de espesor. Luego calcule la tasa de dosis equivalente . Suponga que este campo de radiación externo penetra de manera uniforme en todo el cuerpo. La tasa de dosis de fotones primarios descuida todas las partículas secundarias. Suponga que la distancia efectiva de la fuente desde el punto de dosis es de 10 cm . También supondremos que el punto de dosis es tejido blando y que puede ser simulado razonablemente por el agua y usamos el coeficiente de absorción de energía de masa para el agua.

Ver también: atenuación de rayos gamma

Ver también: Blindaje de rayos gamma

Solución:

La tasa de dosis de fotones primarios se atenúa exponencialmente , y la tasa de dosis de fotones primarios, teniendo en cuenta el escudo, viene dada por:

cálculo de la tasa de dosis

Como se puede ver, no tenemos en cuenta la acumulación de radiación secundaria. Si se producen partículas secundarias o si la radiación primaria cambia su energía o dirección, entonces la atenuación efectiva será mucho menor. Esta suposición generalmente subestima la tasa de dosis real, especialmente para protecciones gruesas y cuando el punto de dosis está cerca de la superficie de la protección, pero esta suposición simplifica todos los cálculos. Para este caso, la tasa de dosis real (con la acumulación de radiación secundaria) será más de dos veces mayor.

Para calcular la tasa de dosis absorbida , tenemos que usar en la fórmula:

  • k = 5,76 x 10 -7
  • S = 3.7 x 10 10 s -1
  • E = 0.662 MeV
  • μ t / ρ =  0.0326 cm 2 / g (los valores están disponibles en NIST)
  • μ = 1.289 cm -1 (los valores están disponibles en NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

La tasa de dosis absorbida resultante en grises por hora es entonces:

tasa de dosis absorbida - gray - cálculo

Como el factor de ponderación de la radiación para los rayos gamma es igual a uno y hemos asumido el campo de radiación uniforme, podemos calcular directamente la tasa de dosis equivalente a partir de la tasa de dosis absorbida como:

dosis equivalente - sievert - cálculo

Si queremos dar cuenta de la acumulación de radiación secundaria, entonces tenemos que incluir el factor de acumulación. La fórmula extendida para la tasa de dosis es entonces:

tasa de dosis absorbida - gris

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

Qué es la dosis absorbida – Fórmula – Ecuación – Definición

Este artículo resume las fórmulas y ecuaciones clave para el cálculo de la dosis absorbida y la tasa de dosis absorbida. Dosis absorbida – Fórmula – Ecuación

Dosis absorbida – Ecuación

La dosis absorbida se define como la cantidad de energía depositada por la radiación ionizante en una sustancia. La dosis absorbida se da el símbolo D . La dosis absorbida generalmente se mide en una unidad llamada gris (Gy), que se deriva del sistema SI. En ocasiones, también se usa la unidad no SI rad , predominantemente en los EE. UU.

dosis absorbida - definición

Unidades de dosis absorbida:

  • Grey . Una dosis de un gray es equivalente a una unidad de energía (julios) depositada en un kilogramo de una sustancia.
  • RAD . Una dosis de un rad es equivalente a la deposición de cien ergios de energía en un gramo de cualquier material.

Dosis absorbida – Ecuación

La tasa de dosis absorbida es la tasa a la que se recibe una dosis absorbida. Es una medida de la intensidad de la dosis de radiación (o fuerza). La tasa de dosis absorbida se define como:

tasa de dosis absorbida - definición

En unidades convencionales, se mide en mrad / seg ,  rad / h, mGy / seg o Gy / h. Dado que la cantidad de exposición a la radiación depende directamente (linealmente) del tiempo que las personas pasan cerca de la fuente de radiación, la dosis absorbida es igual a la intensidad del campo de radiación (tasa de dosis) multiplicado por el tiempo de permanencia en ese campo. El ejemplo anterior indica que una persona podría esperar recibir una dosis de 25 milirems al permanecer en un campo de 50 milirems / hora durante treinta minutos.

Cálculo de la tasa de dosis absorbida

Suponga la fuente isotrópica puntual que contiene 1.0 Ci de 137 Cs , que tiene una vida media de 30.2 años . Tenga en cuenta que la relación entre la vida media y la cantidad de radionúclido requerida para dar una actividad de un curie se muestra a continuación. Esta cantidad de material se puede calcular usando λ, que es la constante de descomposición de ciertos nucleidos:

Curie - Unidad de Actividad

Alrededor del 94,6 por ciento se desintegra por emisión beta a un isómero nuclear de bario metaestable : bario-137m. El pico principal de fotones de Ba-137m es 662 keV . Para este cálculo, suponga que todas las desintegraciones pasan por este canal.

Determine la tasa de dosis primaria de fotones , en gray por hora (Gy.h -1 ), en la superficie externa de un blindaje de plomo de 5 cm de espesor. La tasa de dosis de fotones primarios descuida todas las partículas secundarias. Suponga que la distancia efectiva de la fuente desde el punto de dosis es de 10 cm . También supondremos que el punto de dosis es tejido blando y que puede ser simulado razonablemente por el agua y usamos el coeficiente de absorción de energía de masa para el agua.

Ver también: atenuación de rayos gamma

Ver también: Blindaje de rayos gamma

Solución:

La tasa de dosis de fotones primarios se atenúa exponencialmente , y la tasa de dosis de fotones primarios, teniendo en cuenta el escudo, viene dada por:

cálculo de la tasa de dosis

Como se puede ver, no tenemos en cuenta la acumulación de radiación secundaria. Si se producen partículas secundarias o si la radiación primaria cambia su energía o dirección, entonces la atenuación efectiva será mucho menor. Esta suposición generalmente subestima la tasa de dosis real, especialmente para protecciones gruesas y cuando el punto de dosis está cerca de la superficie de la protección, pero esta suposición simplifica todos los cálculos. Para este caso, la tasa de dosis real (con la acumulación de radiación secundaria) será más de dos veces mayor.

Para calcular la tasa de dosis absorbida , tenemos que usar en la fórmula:

  • k = 5,76 x 10 -7
  • S = 3.7 x 10 10 s -1
  • E = 0.662 MeV
  • μ t / ρ =  0.0326 cm 2 / g (los valores están disponibles en NIST)
  • μ = 1.289 cm -1 (los valores están disponibles en NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

La tasa de dosis absorbida resultante en grises por hora es entonces:

tasa de dosis absorbida - gray - cálculo

Si queremos dar cuenta de la acumulación de radiación secundaria, entonces tenemos que incluir el factor de acumulación. La fórmula extendida para la tasa de dosis es entonces:

tasa de dosis absorbida - gris

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la dosis ambiental equivalente? H * (10) – Definición

La dosis ambiental equivalente es una cantidad operativa para el monitoreo del área. La dosis equivalente ambiental recibe el símbolo H * (10). La unidad SI de H * (10) es el sievert (Sv). Dosimetría de radiación

Dosis ambiental equivalente – H * (10)

Monitoreo de dosis de radiación - Cantidades operacionalesLa dosis ambiental equivalente es una cantidad operativa para el monitoreo del área. Según la ICRP, el equivalente a la dosis ambiental se define como:

Publicación 103 de la CIPR:

«La dosis equivalente en un punto en un campo de radiación que sería producido por el campo expandido y alineado correspondiente en la esfera ICRU a una profundidad de 10 mm en el vector de radio opuesto a la dirección del campo alineado».

La dosis equivalente ambiental recibe el símbolo H * (10) . La unidad SI de H * (10) es el sievert(Sv). La unidad de sievert lleva el nombre del científico sueco Rolf Sievert, que realizó muchos de los primeros trabajos sobre dosimetría en radioterapia. Para todos los tipos de radiación externa, las cantidades operativas para el monitoreo del área se definen sobre la base de un valor de dosis equivalente en un punto en un fantasma simple, la esfera ICRU , que es una esfera de material equivalente a tejido (30 cm de diámetro, Tejido ICRU (blando) con densidad: 1 g / cm 3 y composición en masa: 76,2% de oxígeno, 11,1% de carbono, 10,1% de hidrógeno y 2,6% de nitrógeno).

Como se escribió, las cantidades operativas son medibles a diferencia de una dosis efectiva, y los instrumentos para el monitoreo de radiación se calibran en términos de estas cantidades. En el monitoreo, los valores de estas cantidades operativas se toman como una evaluación suficientemente precisa de la dosis efectiva y la dosis de la piel, respectivamente, en particular, si sus valores están por debajo de los límites de protección. Los vínculos numéricos entre las cantidades operativas y la dosis efectiva se representan mediante coeficientes de conversión conservadores, que se definen para una persona de referencia.

Límites de dosis

Ver también: límites de dosis

Los límites de dosis se dividen en dos grupos, el público y los trabajadores ocupacionalmente expuestos. Según ICRP, la exposición ocupacional se refiere a toda exposición incurrida por los trabajadores en el curso de su trabajo, con la excepción de

  1. exposiciones excluidas y exposiciones de actividades exentas que involucran radiación o fuentes exentas
  2. cualquier exposición médica
  3. La radiación de fondo natural local normal.

La siguiente tabla resume los límites de dosis para los trabajadores ocupacionalmente expuestos y para el público:

límites de dosis - radiación
Tabla de límites de dosis para trabajadores ocupacionalmente expuestos y para el público.
Fuente de datos: ICRP, 2007. Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica. Publicación 103 de la CIPR. Ann. ICRP 37 (2-4).

De acuerdo con la recomendación de la ICRP en su declaración sobre las reacciones tisulares del 21 de abril de 2011, el límite de dosis equivalente para el cristalino del ojo para exposición ocupacional en situaciones de exposición planificadas se redujo de 150 mSv / año a 20 mSv / año, en promedio durante períodos definidos de 5 años, sin dosis anual en un solo año superior a 50 mSv.

Los límites de la dosis efectiva son para la suma de las dosis efectivas relevantes de la exposición externa en el período de tiempo especificado y la dosis efectiva comprometida de las ingestas de radionucleidos en el mismo período. Para los adultos, la dosis efectiva comprometida se calcula para un período de 50 años después de la ingesta, mientras que para los niños se calcula para el período hasta los 70 años. El límite efectivo de dosis para todo el cuerpo de 20 mSv es un valor promedio durante cinco años. El límite real es de 100 mSv en 5 años, con no más de 50 mSv en un año.

Exposición ocupacional: dosis efectiva

En la mayoría de las situaciones de exposición ocupacional, la dosis efectiva, E, puede derivarse de cantidades operativas utilizando la siguiente fórmula:

Exposición ocupacional: externa e interna.

La  dosis comprometida  es una cantidad de dosis que mide el riesgo de salud estocástico debido a una  ingesta de material radiactivo  en el cuerpo humano.

Medición y monitoreo de radiación - Cantidades y límites

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la medición y monitoreo de la dosis de radiación? Cantidades operativas: definición

Para la medición y monitoreo de la dosis de radiación, el ICRP define las cantidades operacionales para el área y el monitoreo individual de las exposiciones externas. Las cantidades operativas son medibles a diferencia de una dosis efectiva, y los instrumentos para el monitoreo de radiación se calibran en términos de estas cantidades. Dosimetría de radiación
radiación ionizante - símbolo de peligro
radiación ionizante – símbolo de peligro

En capítulos anteriores, describimos la dosis equivalente y la dosis efectiva . Pero estas dosis no son directamente medibles . Para este propósito, el ICRP ha introducido y definido un conjunto de cantidades operativas , que pueden medirse y que tienen la intención de proporcionar una estimación razonable de las cantidades protegidas. Estas cantidades tienen como objetivo proporcionar una estimación conservadora del valor de las cantidades de protección relacionadas con una exposición, evitando tanto la subestimación como la sobreestimación excesiva.

Los enlaces numéricos entre estas cantidades están representados por coeficientes de conversión , que se definen para una persona de referencia. Es muy importante que haya disponible un conjunto de coeficientes de conversión acordados internacionalmente para uso general en la práctica de protección radiológica para exposiciones ocupacionales y exposiciones del público. Para el cálculo de los coeficientes de conversión para exposición externa, se utilizan fantasmas computacionales para la evaluación de dosis en varios campos de radiación. Para el cálculo de los coeficientes de dosis a partir de la ingesta de radionucleidos , se utilizan modelos biocinéticos para radionucleidos, datos fisiológicos de referencia y fantasmas computacionales.

En informes publicados (ICRP, 1996b, ICRU, 1997) se publica un conjunto de datos evaluados de coeficientes de conversión para protección y cantidades operativas para exposición externa a fotones, neutrones y radiación de electrones monoenergéticos en condiciones de irradiación específicas.

Monitoreo de dosis de radiación - Cantidades operacionalesEn general, el ICRP define cantidades operativas para el área y el monitoreo individual de exposiciones externas. Las cantidades operativas para el monitoreo del área son:

  • Dosis ambiental equivalente , H * (10). La dosis equivalente ambiental es una cantidad operativa para el monitoreo del área de radiación fuertemente penetrante.
  • Dosis direccional equivalente , H ‘(d, Ω). La dosis direccional equivalente es una cantidad operativa para el monitoreo del área de radiación débilmente penetrante.

Las cantidades operativas para el monitoreo individual son:

  • Dosis personal equivalente , p (0.07) . La dosis equivalente de p (0.07) es una cantidad operativa para el monitoreo individual para la evaluación de la dosis para la piel y las manos y los pies.
  • Dosis personal equivalente , p (10) . La dosis equivalente de p (10) es una cantidad operativa para el monitoreo individual para la evaluación de la dosis efectiva.

Referencia especial: CIPR, 2007. Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica. Publicación 103 de la CIPR. Ann. ICRP 37 (2-4).

Medición y monitoreo de radiación - Cantidades y límites

Monitoreo de área

Dosis ambiental equivalente – H * (10)

La dosis ambiental equivalente es una cantidad operativa para el monitoreo del área. Según la ICRP, el equivalente a la dosis ambiental se define como:

Publicación 103 de la CIPR:

«La dosis equivalente en un punto en un campo de radiación que sería producido por el campo expandido y alineado correspondiente en la esfera ICRU a una profundidad de 10 mm en el vector de radio opuesto a la dirección del campo alineado».

La dosis equivalente ambiental recibe el símbolo H * (10) . La unidad SI de H * (10) es el sievert (Sv). La unidad de sievert lleva el nombre del científico sueco Rolf Sievert, que realizó muchos de los primeros trabajos sobre dosimetría en radioterapia. Para todos los tipos de radiación externa, las cantidades operativas para el monitoreo del área se definen sobre la base de un valor de dosis equivalente en un punto en un fantasma simple, la esfera ICRU , que es una esfera de material equivalente de tejido (30 cm de diámetro, Tejido ICRU (blando) con densidad: 1 g / cm 3 , y composición en masa: 76,2% de oxígeno, 11,1% de carbono, 10,1% de hidrógeno y 2,6% de nitrógeno).

Como se escribió, las cantidades operativas son medibles a diferencia de una dosis efectiva, y los instrumentos para el monitoreo de radiación se calibran en términos de estas cantidades. En el monitoreo, los valores de estas cantidades operativas se toman como una evaluación suficientemente precisa de la dosis efectiva y la dosis de la piel, respectivamente, en particular, si sus valores están por debajo de los límites de protección. Los vínculos numéricos entre las cantidades operativas y la dosis efectiva se representan mediante coeficientes de conversión conservadores, que se definen para una persona de referencia.

Dosis direccional equivalente – H ‘(d, Ω)

La dosis direccional equivalente es una cantidad operativa para el monitoreo del área de radiación débilmente penetrante. La dosis direccional equivalente, H ‘(d, Ω), es la cantidad operativa para la determinación de la dosis equivalente para la piel, la lente del ojo, etc., también para la radiación beta y los fotones de baja energía.

Según la ICRP, el equivalente de dosis direccional se define como:

Publicación 103 de la CIPR:

“ La dosis equivalente en un punto en un campo de radiación que sería producido por el campo expandido correspondiente en la esfera ICRU a una profundidad, d, en un radio en una dirección especificada, Ω «

La dosis direccional equivalente recibe el símbolo H ‘(0.07, Ω) o, en casos excepcionales, H’ (3, Ω). La unidad SI de H ‘(d, Ω) es el sievert (Sv). La unidad de sievert lleva el nombre del científico sueco Rolf Sievert, que realizó muchos de los primeros trabajos sobre dosimetría en radioterapia. Para todos los tipos de radiación externa, las cantidades operativas para el monitoreo del área se definen sobre la base de un valor de dosis equivalente en un punto en un fantasma simple, la esfera ICRU, que es una esfera de material equivalente de tejido (30 cm de diámetro, Tejido ICRU (blando) con densidad: 1 g / cm 3 , y composición en masa: 76,2% de oxígeno, 11,1% de carbono, 10,1% de hidrógeno y 2,6% de nitrógeno).

Como se escribió, las cantidades operativas son medibles a diferencia de una dosis efectiva, y los instrumentos para el monitoreo de radiación se calibran en términos de estas cantidades. En el monitoreo, los valores de estas cantidades operativas se toman como una evaluación suficientemente precisa de la dosis efectiva y la dosis de la piel, respectivamente, en particular, si sus valores están por debajo de los límites de protección. Los vínculos numéricos entre las cantidades operativas y la dosis efectiva se representan mediante coeficientes de conversión conservadores, que se definen para una persona de referencia.

Monitoreo individual

Dosis personal equivalente – H p (10) – H p (0.07)

Generalmente, la dosis personal equivalente , p (d), es una cantidad operativa para el monitoreo individual. Según la ICRP, el equivalente de dosis personal se define como:

Publicación 103 de la CIPR:

«La dosis equivalente en tejidos blandos (comúnmente interpretada como la ‘esfera ICRU’) a una profundidad apropiada, d, debajo de un punto específico en el cuerpo humano. «

La dosis equivalente personal recibe el símbolo p (d). Dos cantidades operativas comunes para el monitoreo individual definido por el ICRP son:

  • Dosis personal equivalente , p (0.07) . La dosis equivalente de p (0.07) es una cantidad operativa para el monitoreo individual para la evaluación de la dosis para la piel y las manos y los pies.
  • Dosis personal equivalente , p (10) . La dosis equivalente de p (10) es una cantidad operativa para el monitoreo individual para la evaluación de la dosis efectiva.

Como se puede ver, se pueden usar varias profundidades. La dosis personal equivalente , H p (d), se puede evaluar indirectamente con un detector delgado equivalente de tejido ( dosímetro de radiación ) que se usa en la superficie del cuerpo y se cubre con un grosor apropiado de material equivalente de tejido. El punto especificado, d, normalmente se considera donde se usa el dosímetro de radiación.

Para la evaluación de los órganos superficiales y el control de la dosis equivalente, se emplean profundidades de 0.07 mm para la piel y 3 mm para el cristalino del ojo, y los equivalentes de dosis personal para esas profundidades se denotan por H p (0.07) y H p ( 3), respectivamente. H p (0.07) también se llama la dosis equivalente baja .

Para la evaluación de los órganos profundos y el control de la dosis efectiva , se elige p (10) con una profundidad d = 10 mm. H p (10) también se llama la dosis profunda equivalente . Si el dosímetro personal se usa en una posición del cuerpo representativa de su exposición, a dosis bajas y bajo el supuesto de una exposición uniforme de todo el cuerpo, el valor de Hp (10) proporciona un valor de dosis efectivo suficientemente preciso para fines de protección radiológica . Las radiaciones de neutrones y gamma contribuyen tanto a la dosis profunda como a la superficial, pero la radiación beta se absorbe completamente en la piel y, por lo tanto, solo contribuye a la dosis superficial.

La unidad SI de p (d) es el sievert (Sv). La unidad de sievert lleva el nombre del científico sueco Rolf Sievert, que realizó muchos de los primeros trabajos sobre dosimetría en radioterapia. Para todos los tipos de radiación externa, las cantidades operativas para la monitorización individual se definen sobre la base de un valor de dosis equivalente en un punto en un fantasma simple, la esfera ICRU, que es una esfera de material equivalente en tejido (30 cm de diámetro, Tejido ICRU (blando) con densidad: 1 g / cm 3 y composición en masa: 76,2% de oxígeno, 11,1% de carbono, 10,1% de hidrógeno y 2,6% de nitrógeno).

Como se escribió, las cantidades operativas son medibles a diferencia de una dosis efectiva, y los instrumentos para el monitoreo de radiación se calibran en términos de estas cantidades. En el monitoreo, los valores de estas cantidades operativas se toman como una evaluación suficientemente precisa de la dosis efectiva y la dosis de la piel, respectivamente, en particular, si sus valores están por debajo de los límites de protección. Los vínculos numéricos entre las cantidades operativas y la dosis efectiva se representan mediante coeficientes de conversión conservadores, que se definen para una persona de referencia. En la mayoría de las situaciones prácticas, los dosímetros proporcionan aproximaciones razonables al equivalente de dosis personal, H p(d), al menos en la ubicación del dosímetro. Cabe señalar que la dosis personal equivalente generalmente sobreestima la dosis efectiva. Por otro lado, este procedimiento es válido solo a dosis bajas y bajo el supuesto de una exposición uniforme de todo el cuerpo . Sin embargo, para dosis personales altas que se aproximan o exceden el límite de dosis anual, o en campos de radiación fuertemente no homogéneos, este procedimiento podría no ser suficiente.

Exposición ocupacional: dosis efectiva

En la mayoría de las situaciones de exposición ocupacional, la dosis efectiva, E, puede derivarse de cantidades operativas utilizando la siguiente fórmula:

Exposición ocupacional: externa e interna.

La  dosis comprometida  es una cantidad de dosis que mide el riesgo de salud estocástico debido a una  ingesta de material radiactivo  en el cuerpo humano.

Límites de dosis

Ver también: límites de dosis

Los límites de dosis se dividen en dos grupos, el público y los trabajadores ocupacionalmente expuestos. Según la ICRP, la exposición ocupacional se refiere a toda exposición incurrida por los trabajadores en el curso de su trabajo, con la excepción de

  1. exposiciones excluidas y exposiciones de actividades exentas que involucran radiación o fuentes exentas
  2. cualquier exposición médica
  3. La radiación de fondo natural local normal.

La siguiente tabla resume los límites de dosis para los trabajadores ocupacionalmente expuestos y para el público:

límites de dosis - radiación
Tabla de límites de dosis para trabajadores ocupacionalmente expuestos y para el público.
Fuente de datos: ICRP, 2007. Recomendaciones de 2007 de la Comisión Internacional de Protección Radiológica. Publicación 103 de la CIPR. Ann. ICRP 37 (2-4).

De acuerdo con la recomendación de la ICRP en su declaración sobre las reacciones tisulares del 21 de abril de 2011, el límite de dosis equivalente para el cristalino del ojo para exposición ocupacional en situaciones de exposición planificadas se redujo de 150 mSv / año a 20 mSv / año, en promedio durante períodos definidos de 5 años, sin dosis anual en un solo año superior a 50 mSv.

Los límites de la dosis efectiva son para la suma de las dosis efectivas relevantes de la exposición externa en el período de tiempo especificado y la dosis efectiva comprometida de las ingestas de radionucleidos en el mismo período. Para los adultos, la dosis efectiva comprometida se calcula para un período de 50 años después de la ingesta, mientras que para los niños se calcula para el período hasta los 70 años. El límite efectivo de dosis para todo el cuerpo de 20 mSv es un valor promedio durante cinco años. El límite real es de 100 mSv en 5 años, con no más de 50 mSv en un año.

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

Qué es la dosis efectiva – Cálculo – Ejemplo – Definición

Dosis efectiva – Cálculo – Ejemplo. Calcule la tasa de dosis primaria de fotones, en sieverts por hora (Sv.h-1), en la superficie externa de un blindaje de plomo de 5 cm de espesor. Luego calcule las tasas de dosis equivalentes y efectivas para dos casos. Dosimetría de radiación

En la protección radiológica, la dosis efectiva es una cantidad de dosis definida como la suma de las dosis equivalentes de tejido ponderadas por los factores de ponderación de órganos (tejidos) ICRP , T , que tiene en cuenta la sensibilidad variable de los diferentes órganos y tejidos a la radiación . La dosis efectiva se da el símbolo E . La unidad SI de E es el sievert (Sv) o aún se usa comúnmente rem (hombre equivalente a roentgen) ( 1 Sv = 100 rem ). La unidad de sievert lleva el nombre del científico sueco Rolf Sievert, que realizó muchos de los primeros trabajos sobre dosimetría en radioterapia.

Dosis efectiva: cálculo de la tasa de dosis protegida

Suponga la fuente isotrópica puntual que contiene 1.0 Ci de 137 Cs , que tiene una vida media de 30.2 años . Tenga en cuenta que la relación entre la vida media y la cantidad de radionúclido requerida para dar una actividad de un curie se muestra a continuación. Esta cantidad de material se puede calcular usando λ, que es la constante de descomposición de ciertos nucleidos:

Curie - Unidad de Actividad

Alrededor del 94,6 por ciento se desintegra por emisión beta a un isómero nuclear de bario metaestable : bario-137m. El pico principal de fotones de Ba-137m es 662 keV . Para este cálculo, suponga que todas las desintegraciones pasan por este canal.

Calcule la tasa de dosis de fotones primarios , en sieverts por hora (Sv.h -1 ), en la superficie externa de un blindaje de plomo de 5 cm de espesor. Luego calcule las tasas de dosis equivalentes y efectivas para dos casos.

  1. Suponga que este campo de radiación externo penetra de manera uniforme en todo el cuerpo. Eso significa: Calcular la tasa efectiva de dosis para todo el cuerpo .
  2. Suponga que este campo de radiación externo penetra solo en los pulmones y los otros órganos están completamente protegidos. Eso significa: calcular la tasa de dosis efectiva .

Tenga en cuenta que, la tasa de dosis de fotones primarios descuida todas las partículas secundarias. Suponga que la distancia efectiva de la fuente desde el punto de dosis es de 10 cm . También supondremos que el punto de dosis es tejido blando y que el agua puede simularlo razonablemente, y usamos el coeficiente de absorción de energía de masa para el agua.

Ver también: atenuación de rayos gamma

Ver también: Blindaje de rayos gamma

Solución:

La tasa de dosis de fotones primarios se atenúa exponencialmente , y la tasa de dosis de fotones primarios, teniendo en cuenta el escudo, viene dada por:

cálculo de la tasa de dosis

Como se puede ver, no tenemos en cuenta la acumulación de radiación secundaria. Si se producen partículas secundarias o si la radiación primaria cambia su energía o dirección, entonces la atenuación efectiva será mucho menor. Esta suposición generalmente subestima la tasa de dosis real, especialmente para protecciones gruesas y cuando el punto de dosis está cerca de la superficie de la protección, pero esta suposición simplifica todos los cálculos. Para este caso, la tasa de dosis real (con la acumulación de radiación secundaria) será más de dos veces mayor.

Para calcular la tasa de dosis absorbida , tenemos que usar en la fórmula:

  • k = 5,76 x 10 -7
  • S = 3.7 x 10 10 s -1
  • E = 0.662 MeV
  • μ t / ρ =  0.0326 cm 2 / g (los valores están disponibles en NIST)
  • μ = 1.289 cm -1 (los valores están disponibles en NIST)
  • D = 5 cm
  • r = 10 cm

Resultado:

La tasa de dosis absorbida resultante en grises por hora es entonces:

tasa de dosis absorbida - gray - cálculo

1) irradiación uniforme

Dado que el factor de ponderación de la radiación para los rayos gamma es igual a uno y hemos asumido el campo de radiación uniforme (el factor de ponderación del tejido también es igual a la unidad), podemos calcular directamente la tasa de dosis equivalente y la tasa de dosis efectiva (E = H T ) de la tasa de dosis absorbida como:

cálculo - dosis efectiva - uniforme

2) irradiación parcial

En este caso, suponemos una irradiación parcial de los pulmones solamente. Por lo tanto, tenemos que usar el factor de ponderación del tejido , que es igual a T = 0.12 . El factor de ponderación de la radiación para los rayos gamma es igual a uno. Como resultado, podemos calcular la tasa de dosis efectiva como:

cálculo - dosis efectiva - no uniforme

Tenga en cuenta que, si una parte del cuerpo (p. Ej., Los pulmones) recibe una dosis de radiación, representa un riesgo de un efecto particularmente perjudicial (p. Ej., Cáncer de pulmón). Si se administra la misma dosis a otro órgano, representa un factor de riesgo diferente.

Si queremos dar cuenta de la acumulación de radiación secundaria, entonces tenemos que incluir el factor de acumulación. La fórmula extendida para la tasa de dosis es entonces:

tasa de dosis absorbida - gris

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.