O que é espectroscopia – definição

Em geral, a espectroscopia é a ciência do estudo da interação entre matéria e energia irradiada. Espectroscopia – Resolução de Energia

Em geral, a espectroscopia é a ciência do estudo da interação entre matéria e energia irradiada, enquanto a espectrometria é o método usado para adquirir uma medida quantitativa do espectro. A espectroscopia (scopy significa observação ) não gera nenhum resultado. É a abordagem teórica da ciência. A espectrometria ( medição de meios de medição ) é a aplicação prática em que os resultados são gerados. É a medida da intensidade da radiação usando um dispositivo eletrônico. Frequentemente, esses termos são usados ​​de forma intercambiável, mas toda espectrometria não é espectroscopia (por exemplo, espectrometria de massa vs.espectroscopia de massa)

Espectroscopia gama

Fonte: wikipedia.org Licença: Domínio Público

Em geral, a espectroscopia gama é o estudo dos espectros de energia de fontes de raios gama, como na indústria nuclear, investigação geoquímica e astrofísica. Espectroscópios, ou espectrômetros, são dispositivos sofisticados projetados para medir a distribuição espectral de potência de uma fonte. A radiação incidente gera um sinal que permite determinar a energia da partícula incidente.

A maioria das fontes radioativas produz raios gama , que são de várias energias e intensidades. Os raios gama frequentemente  acompanham a emissão  de  radiação alfa  e  beta . Quando essas emissões são detectadas e analisadas com um sistema de espectroscopia, um espectro de energia de raios gama pode ser produzido. Raios gama de decaimento radioativoestão na faixa de energia de alguns keV a ~ 8 MeV, correspondendo aos níveis típicos de energia nos núcleos com vida útil razoavelmente longa. Como foi escrito, eles são produzidos pela decomposição dos núcleos à medida que passam de um estado de alta energia para um estado inferior. Uma análise detalhada desse espectro é normalmente usada para determinar a identidade e a quantidade de emissores gama presentes em uma amostra e é uma ferramenta vital no ensaio radiométrico. O espectro gama é característico dos nuclídeos emissores gama contidos na fonte.

Veja também: Espectroscopia gama

Espectroscopia de Raios-X

A espectroscopia de raios-X é um termo geral para várias técnicas espectroscópicas para caracterização de materiais usando excitação de raios-x. Quando um elétron da camada interna de um átomo é excitado pela energia de um fóton, ele se move para um nível de energia mais alto. Como o processo deixa uma  lacuna  no nível de energia eletrônica de onde o elétron veio, os elétrons externos do átomo  caem em cascata  para preencher os níveis atômicos mais baixos e um ou mais  raios-X característicos geralmente são emitidos. Como resultado, picos de intensidade acentuados aparecem no espectro em comprimentos de onda que são uma característica do material a partir do qual o alvo do ânodo é feito. As frequências dos raios X característicos podem ser previstas a partir do modelo de Bohr. A análise do espectro de emissão de raios-X produz resultados qualitativos sobre a composição elementar da amostra.

Espectrômetro de Raios Gama – Espectroscópio de Raios Gama

Como foi escrito, o estudo e a análise de espectros de raios gama para uso científico e técnico são chamados espectroscopia gama, e os espectrômetros de raios gama são os instrumentos que observam e coletam esses dados. Um espectrômetro de raios gama (GRS) é um dispositivo sofisticado para medir a distribuição de energia da radiação gama. Para a medição de raios gama acima de várias centenas de keV, existem duas categorias de detectores de grande importância: cintiladores inorgânicos como NaI (Tl) e detectores semicondutores. Nos artigos anteriores, descrevemos a espectroscopia gama usando um detector de cintilação, que consiste em um cristal cintilador adequado, um tubo fotomultiplicador e um circuito para medir a altura dos pulsos produzidos pelo fotomultiplicador. As vantagens de um contador de cintilação são sua eficiência (tamanho grande e alta densidade) e as altas taxas de precisão e contagem possíveis. Devido ao alto número atômico de iodo, um grande número de todas as interações resultará na absorção completa da energia dos raios gama, de modo que a fração fotográfica será alta.

Detector HPGe - Germânio
Detector HPGe com criostato LN2 Fonte: canberra.com

Mas, se for necessária uma resolução perfeita de energia , precisamos usar um detector à base de germânio , como o detector HPGe . Os detectores de semicondutores à base de germânio são mais comumente usados ​​onde é necessária uma resolução de energia muito boa, especialmente para espectroscopia gama , bem como espectroscopia de raios-x. Na espectroscopia gama, o germânio é preferido devido ao seu número atômico ser muito maior que o silício e aumentar a probabilidade de interação com raios gama. Além disso, o germânio possui menor energia média necessária para criar um par de elétrons-orifícios, que é 3,6 eV para silício e 2,9 eV para germânio. Isso também fornece ao último uma melhor resolução em energia. O FWHM (largura total na metade do máximo) para detectores de germânio é uma função da energia. Para um fóton de 1,3 MeV, o FWHM é de 2,1 keV, o que é muito baixo.

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: translations@nuclear-power.net ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.