Facebook Instagram Youtube Twitter

¿Qué es la desintegración alfa? – Radiactividad alfa – Definición

La desintegración alfa o la desintegración α representa la desintegración de un núcleo padre a una hija a través de la emisión del núcleo de un átomo de helio. La desintegración alfa es un proceso de túnel cuántico. Para ser emitida, la partícula alfa debe penetrar una barrera potencial. Dosimetría de radiación

La desintegración alfa  (o desintegración α y también la radiactividad alfa ) representa la desintegración de un núcleo padre a una hija a través de la emisión del núcleo de un átomo de helio. Esta transición puede caracterizarse como:

Alpha Decay - Alpha Radioactivity

Como se puede ver en la figura, la partícula alfa se emite en descomposición alfa. Las partículas alfa son núcleos energéticos de helio . Las partículas alfa consisten en dos protones y dos neutrones unidos en una partícula idéntica a un núcleo de helio. Las partículas alfa son relativamente grandes y tienen una carga positiva doble. No son muy penetrantes y un trozo de papel puede detenerlos. Viajan solo unos pocos centímetros pero depositan todas sus energías a lo largo de sus cortos caminos.

Deterioro de uranio 238.En la práctica, este modo de descomposición solo se ha observado en nucleidos considerablemente más pesados ​​que el níquel, siendo los emisores alfa más ligeros conocidos los isótopos más ligeros (números de masa 106-110) de teluro (elemento 52). En los reactores nucleares, la descomposición alfa ocurre, por ejemplo, en el combustible (descomposición alfa de núcleos pesados). Las partículas alfa son emitidas comúnmente por todos los núcleos radiactivos pesados ​​que se encuentran en la naturaleza ( uranio , torio o radio), así como los elementos transuránicos (neptunio, plutonio o americio).

Teoría de la descomposición alfa – Túnel cuántico

Entre la variedad de canales en los que se desintegra un núcleo, la desintegración alfa ha sido uno de los más estudiados. El canal de desintegración alfa en núcleos pesados ​​y superpesados ​​ha proporcionado información sobre las propiedades fundamentales de los núcleos lejos de la estabilidad, como sus energías de estado fundamental y la estructura de sus niveles nucleares.

La desintegración alfa es un proceso de túnel cuántico . Para ser emitida, la partícula alfa debe penetrar una barrera potencial. Esto es similar a la descomposición de los grupos , en el que un núcleo atómico emite un pequeño «grupo» de neutrones y protones (por ejemplo, 12 C).

La altura de la barrera de Coulomb para los núcleos de A «200 es de aproximadamente 20-25 MeV . Las partículas alfa emitidas en la desintegración nuclear tienen energías típicas de aproximadamente 5 MeV. Por un lado, una partícula alfa de 5 MeV entrante se dispersa desde un núcleo pesado y no puede penetrar la barrera de Coulomb y acercarse lo suficiente al núcleo para interactuar a través de la fuerza fuerte. Por otro lado, una partícula alfa de 5 MeV unida en un pozo de potencial nuclear puede tunelizar esa misma barrera de Coulomb.

desintegración alfa - túnel cuánticoPara 1928, George Gamow (e independientemente por Ronald Gurney y Edward Condon ) había resuelto la teoría de la desintegración alfa a través del túnel cuántico.. Asumieron que la partícula alfa y el núcleo hijo existen dentro del núcleo padre antes de su disociación, es decir, la descomposición de los estados cuasiestacionarios (QS). Un estado cuasiestacionario se define como un estado de larga vida que eventualmente decae. Inicialmente, el grupo alfa oscila en el potencial del núcleo hijo, y el potencial de Coulomb impide su separación. La partícula alfa está atrapada en un pozo potencial por el núcleo. Clásicamente, está prohibido escapar, pero de acuerdo con los (entonces) recién descubiertos principios de la mecánica cuántica, tiene una probabilidad pequeña (pero no nula) de «tunelizar» a través de la barrera y aparecer en el otro lado para escapar del núcleo . Utilizando el mecanismo de túnel, Gamow, Condon y Gurney calcularon la penetrabilidad de la partícula α de túnel a través de la barrera de Coulomb, Encontrar las vidas de algunos núcleos emisores α. El principal éxito de este modelo fue la reproducción de la ley semi-empírica de Geiger-Nuttall que expresa las vidas de los emisores α en términos de las energías de las partículas α liberadas. Cabe señalar que otras formas comunes de desintegración (p. Ej., Desintegración beta) se rigen por la interacción entre la fuerza nuclear y la fuerza electromagnética.

Referencia especial: WSC Williams. Física nuclear y de partículas. Clarendon Press; 1 edición, 1991, ISBN: 978-0198520467.

Ley Geiger-Nuttall

La ley Geiger-Nuttall es una ley semiempírica que expresa la vida útil (semivida) del emisor alfa en términos de la energía de la partícula alfa liberada. En otras palabras, establece que los isótopos de corta duración emiten más partículas alfa enérgicas que las de larga duración. Esta regla fue formulada por Hans Geiger y John Mitchell Nuttall en 1911 antes del desarrollo de la formulación teórica. La ley de Geiger-Nuttall puede expresarse matemáticamente como:

Ley Geiger-Nuttall - ecuación

donde un y b son constantes empíricas que se encuentran a partir de gráficas logarítmicas de los datos experimentales. R α representa el rango lineal de la partícula alfa, por lo tanto, es una medida directa de la energía cinética de la partícula alfa. El ancho de la resonancia (Γ) generalmente está relacionado con la vida media (τ) del núcleo excitado por la relación: Γ = ℏ / τ

Leyes de conservación en la decadencia alfa

Al analizar las reacciones nucleares , aplicamos las muchas leyes de conservación . Las reacciones nucleares están sujetas a las leyes de conservación clásicas para carga, momento, momento angular y energía (incluidas las energías en reposo). Las leyes de conservación adicionales, no previstas por la física clásica, son:

Algunas de estas leyes se obedecen en todas las circunstancias, otras no. Hemos aceptado la conservación de la energía y el impulso. En todos los ejemplos dados, suponemos que el número de protones y el número de neutrones se conservan por separado. Encontraremos circunstancias y condiciones en las cuales esta regla no es cierta. Cuando consideramos reacciones nucleares no relativistas, es esencialmente cierto. Sin embargo, cuando consideramos las energías nucleares relativistas o las que involucran interacciones débiles, encontraremos que estos principios deben extenderse.

Algunos principios de conservación han surgido de consideraciones teóricas, otros son solo relaciones empíricas. No obstante, cualquier reacción no expresamente prohibida por las leyes de conservación generalmente ocurrirá, aunque sea a un ritmo lento. Esta expectativa se basa en la mecánica cuántica. A menos que la barrera entre los estados inicial y final sea infinitamente alta, siempre hay una probabilidad distinta de cero de que un sistema haga la transición entre ellos.

Para analizar las reacciones no relativistas, es suficiente tener en cuenta cuatro de las leyes fundamentales que rigen estas reacciones.

  1. Conservación de nucleones . El número total de nucleones antes y después de una reacción es el mismo.
  2. Conservación de carga . La suma de las cargas en todas las partículas antes y después de una reacción es la misma.
  3. Conservación del impulso . El impulso total de las partículas que interactúan antes y después de una reacción es el mismo.
  4. Conservación de energía . La energía, incluida la energía en masa en reposo, se conserva en reacciones nucleares.

Referencia: Lamarsh, John R. Introducción a la ingeniería nuclear 2da Edición

Decaimiento alfa: valor Q

En física nuclear y de partículas, la energía de las reacciones nucleares está determinada por el valor Q de esa reacción. El valor Q de la reacción se define como la diferencia entre la suma de las masas en reposo de los reactivos iniciales y la suma de las masas de los productos finales , en unidades de energía (generalmente en MeV).

Considere una reacción típica, en la cual el proyectil a y el objetivo A dan lugar a dos productos, B y b. Esto también se puede expresar en la notación que hemos utilizado hasta ahora, a + A → B + b , o incluso en una notación más compacta, A (a, b) B .

Ver también: E = mc2

El valor Q de esta reacción viene dado por:

Q = [ma + mA – (mb + mB)] c 2

Cuando se describe la desintegración alfa (una reacción sin proyectil), el núcleo desintegrante generalmente se conoce como el núcleo padre y el núcleo que queda después del evento como el núcleo hijo. La masa total en reposo del núcleo hijo y de la radiación nuclear liberada en una desintegración alfa, m Hija + m Radiación , es siempre menor que la del núcleo padre, m padre . La diferencia masa-energía,

Q = [m padre – (m Hija + m Radiación )] c 2

aparece como la energía de desintegración, liberada en el proceso. Por ejemplo, el valor Q de la desintegración alfa típica es:

desintegración alfa - valor q - ejemplo

La energía de desintegración de aproximadamente 5 MeV es la energía cinética típica de la partícula alfa. Para cumplir con la ley de conservación del momento, la mayor parte de la energía de desintegración debe aparecer como la energía cinética de la partícula alfa. Después de una desintegración alfa o beta, el núcleo hijo a menudo queda en un estado de energía excitado. Para estabilizarse, posteriormente emite fotones de alta energía, rayos γ.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.