Facebook Instagram Youtube Twitter

¿Qué es la atenuación de rayos gamma? Definición

La atenuación de rayos gamma describe la atenuación de los rayos gamma monoenergéticos colimados en un haz estrecho y su paso a través del material. Dosimetría de radiación

Atenuación de rayos gamma

Ver también: atenuación de rayos X

La sección transversal total de interacción de un rayo gamma con un átomo es igual a la suma de las tres secciones transversales parciales mencionadas: σ = σ f + σ C + σ 

  • σ f – Efecto fotoeléctrico
  • σ C – Dispersión de Compton
  • σ p – Producción en pareja

Dependiendo de la energía de los rayos gamma y del material absorbente, una de las tres secciones transversales parciales puede ser mucho más grande que las otras dos. A valores pequeños de energía de rayos gamma domina el efecto fotoeléctrico . La dispersión de Compton domina a las energías intermedias. La dispersión de compton también aumenta al disminuir el número atómico de la materia, por lo tanto, el intervalo de dominación es más amplio para los núcleos de luz. Finalmente, la producción de pares electrón-positrón domina a altas energías. De acuerdo con la definición de la sección transversal de interacción, se puede derivar la dependencia de la intensidad de los rayos gamma del grosor del material absorbente. Si los rayos gamma monoenergéticos se coliman en un haz estrechoy si el detector detrás del material solo detecta los rayos gamma que pasaron a través de ese material sin ningún tipo de interacción con este material, entonces la dependencia debería ser una simple atenuación exponencial de los rayos gamma . Cada una de estas interacciones elimina el fotón del haz por absorción o por dispersión fuera de la dirección del detector. Por lo tanto, las interacciones pueden caracterizarse por una probabilidad fija de ocurrencia por unidad de longitud de camino en el absorbedor. La suma de estas probabilidades se llama coeficiente de atenuación lineal :

μ = τ (fotoeléctrico) + σ (Compton) + κ (par)

Atenuación de rayos gamma
La importancia relativa de varios procesos de interacción de radiación gamma con la materia.

Coeficiente de atenuación lineal

La atenuación de la radiación gamma se puede describir con la siguiente ecuación.

I = I 0 .e -μx

, donde I es la intensidad después de la atenuación, I o es la intensidad incidente, μ es el coeficiente de atenuación lineal (cm -1 ) y el espesor físico del absorbedor (cm).

Atenuación
Dependencia de la intensidad de la radiación gamma en el espesor del absorbedor

Los materiales enumerados en la tabla de al lado son aire, agua y elementos diferentes desde el carbono ( Z = 6) hasta el plomo ( Z = 82) y sus coeficientes de atenuación lineal se dan para tres energías de rayos gamma. Hay dos características principales del coeficiente de atenuación lineal:

  • El coeficiente de atenuación lineal aumenta a medida que aumenta el número atómico del absorbedor.
  • El coeficiente de atenuación lineal para todos los materiales disminuye con la energía de los rayos gamma.

Capa de valor medio

capa de valor medioLa capa de valor medio expresa el espesor del material absorbente necesario para la reducción de la intensidad de radiación incidente en un factor de dos . Hay dos características principales de la capa de valor medio:

  • La capa de valor medio disminuye a medida que aumenta el número atómico del absorbedor. Por ejemplo, se necesitan 35 m de aire para reducir la intensidad de un haz de rayos gamma de 100 keV en un factor de dos, mientras que solo 0,12 mm de plomo pueden hacer lo mismo.
  • La capa de valor medio para todos los materiales aumenta con la energía de los rayos gamma. Por ejemplo, desde 0,26 cm para hierro a 100 keV hasta aproximadamente 1,06 cm a 500 keV.

Coeficiente de atenuación masiva

Al caracterizar un material absorbente, a veces podemos usar el coeficiente de atenuación de masa.  El coeficiente de atenuación de masa se define como la relación del coeficiente de atenuación lineal y la densidad del absorbedor (μ / ρ) . La atenuación de la radiación gamma se puede describir con la siguiente ecuación:

I = I 0 .e – (μ / ρ) .ρl

, donde ρ es la densidad del material, (μ / ρ) es el coeficiente de atenuación de masa y ρ.l es el espesor de la masa. La unidad de medida utilizada para el coeficiente de atenuación de masa cm 2 g -1. Para las energías intermedias, la dispersión de Compton domina y diferentes absorbentes tienen coeficientes de atenuación de masa aproximadamente iguales. Esto se debe al hecho de que la sección transversal de la dispersión de Compton es proporcional a la Z (número atómico) y, por lo tanto, el coeficiente es proporcional a la densidad del material ρ. A valores pequeños de energía de rayos gamma o a valores altos de energía de rayos gamma, donde el coeficiente es proporcional a las potencias más altas del número atómico Z (para efecto fotoeléctrico σ f ~ Z 5 ; para producción de pares σ p ~ Z2 ), el coeficiente de atenuación μ no es una constante.

Ejemplo:

¿Qué cantidad de agua necesita, si desea reducir la intensidad de un haz de rayos gamma monoenergéticos ( haz estrecho ) de 500 keV al 1% de su intensidad incidente? La capa de valor medio para los rayos gamma de 500 keV en agua es de 7.15 cm y el coeficiente de atenuación lineal para los rayos gamma de 500 keV en agua es de 0.097 cm -1 . La pregunta es bastante simple y se puede describir mediante la siguiente ecuación:I (x) = frac {I_ {0}} {100}, ;;  cuando;  x =?Si la capa de valor medio para el agua es 7.15 cm, el coeficiente de atenuación lineal es:mu = frac {ln2} {7.15} = 0.097cm ^ {- 1}Ahora podemos usar la ecuación de atenuación exponencial:I (x) = I_0; exp; (- mu x)frac {I_0} {100} = I_0; exp; (- 0.097 x)por lo tantofrac {1} {100} =; exp; (- 0.097 x)lnfrac {1} {100} = - ln; 100 = -0.097 xx = frac {ln100} {{0.097}} = 47.47; cmEntonces el espesor requerido de agua es de aproximadamente 47.5 cm . Este es un espesor relativamente grande y es causado por pequeños números atómicos de hidrógeno y oxígeno. Si calculamos el mismo problema para el plomo (Pb) , obtenemos el grosor x = 2.8cm .

Coeficientes de atenuación lineal

Tabla de coeficientes de atenuación lineal (en cm-1) para diferentes materiales a energías de rayos gamma de 100, 200 y 500 keV.

Amortiguador 100 keV 200 keV 500 keV
Aire   0.000195 / cm   0.000159 / cm   0.000112 / cm
Agua 0,167 / cm 0.136 / cm 0,097 / cm
Carbón 0.335 / cm 0.274 / cm 0,196 / cm
Aluminio 0.435 / cm 0.324 / cm 0.227 / cm
Planchar 2,72 / cm 1.09 / cm 0.655 / cm
Cobre 3.8 / cm 1.309 / cm 0,73 / cm
Dirigir 59,7 / cm 10.15 / cm 1,64 / cm

Capas de valor medio

Tabla de capas de valor medio (en cm) para diferentes materiales con energías de rayos gamma de 100, 200 y 500 keV.

Amortiguador 100 keV 200 keV 500 keV
Aire 3555 cm 4359 cm 6189 cm
Agua 4,15 cm 5,1 cm 7,15 cm
Carbón 2,07 cm 2,53 cm 3,54 cm
Aluminio 1,59 cm 2,14 cm 3,05 cm
Planchar 0,26 cm 0,64 cm 1,06 cm
Cobre 0,18 cm 0,53 cm 0,95 cm
Dirigir  0,012 cm  0,068 cm  0,42 cm

Validez de la Ley Exponencial

La ley exponencial siempre describirá la atenuación de la radiación primaria por la materia. Si se producen partículas secundarias o si la radiación primaria cambia su energía o dirección, entonces la atenuación efectiva será mucho menor. La radiación penetrará más profundamente en la materia de lo que se predice solo por la ley exponencial. El proceso debe tenerse en cuenta al evaluar el efecto de la protección contra la radiación.

Ejemplo de acumulación de partículas secundarias.  Depende en gran medida del carácter y los parámetros de las partículas primarias.
Ejemplo de acumulación de partículas secundarias. Depende en gran medida del carácter y los parámetros de las partículas primarias.

Factores de acumulación de blindaje contra rayos gamma

El factor de acumulación es un factor de corrección que considera la influencia de la radiación dispersa más cualquier partícula secundaria en el medio durante los cálculos de protección. Si queremos dar cuenta de la acumulación de radiación secundaria, entonces tenemos que incluir el factor de acumulación . El factor de acumulación es entonces un factor multiplicativo que da cuenta de la respuesta a los fotones no colidados para incluir la contribución de los fotones dispersos. Por lo tanto, el factor de acumulación se puede obtener como una relación de la dosis total a la respuesta para la dosis no contaminada.

Ver también: blindaje de rayos gamma

La fórmula extendida para el cálculo de la tasa de dosis es:

Factor de acumulación

El ANSI / ANS-6.4.3-1991 Coeficientes de atenuación de rayos gamma y factores de acumulación para el estándar de materiales de ingeniería, contiene coeficientes de atenuación de rayos gamma derivados y factores de acumulación para materiales y elementos de ingeniería seleccionados para usar en cálculos de blindaje (ANSI / ANS-6.1 .1, 1991).

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: [email protected] o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.