Was ist das Naturschutzgesetz im Beta-Zerfall – Definition

Naturschutzgesetze im Beta-Zerfall. Zur Analyse nicht-relativistischer Reaktionen genügt es, vier der Grundgesetze zu beachten, die diese Reaktionen regeln. Dosimetrie

Der Beta-Zerfall oder β-Zerfall repräsentiert den Zerfall eines Elternkerns zu einer Tochter durch die Emission des Beta-Partikels. Dieser Übergang ( β  Zerfall ) kann charakterisiert werden als:

Beta-Zerfall - Beta-Radioaktivität - Definition

Naturschutzgesetze im Beta-Zerfall

Bei der Analyse von Kernreaktionen wenden wir die vielen Erhaltungsgesetze an . Kernreaktionen unterliegen den klassischen Erhaltungsgesetzen für Ladung, Impuls, Drehimpuls und Energie  (einschließlich Ruheenergien). Zusätzliche Erhaltungsgesetze, die von der klassischen Physik nicht erwartet werden, sind:

Bestimmte dieser Gesetze werden unter allen Umständen eingehalten, andere nicht. Wir haben die Erhaltung von Energie und Dynamik akzeptiert. In allen Beispielen nehmen wir an, dass die Anzahl der Protonen und die Anzahl der Neutronen getrennt erhalten bleiben. Wir werden Umstände und Bedingungen finden, unter denen diese Regel nicht wahr ist. Wenn wir nicht-relativistische Kernreaktionen betrachten, ist dies im Wesentlichen wahr. Wenn wir jedoch relativistische Kernenergien oder solche mit schwachen Wechselwirkungen betrachten, werden wir feststellen, dass diese Prinzipien erweitert werden müssen.

Einige Erhaltungsprinzipien sind aus theoretischen Überlegungen hervorgegangen, andere sind nur empirische Beziehungen. Ungeachtet dessen wird jede Reaktion, die nicht ausdrücklich durch die Erhaltungsgesetze verboten ist, im Allgemeinen auftreten, wenn auch nur langsam. Diese Erwartung basiert auf der Quantenmechanik. Sofern die Barriere zwischen dem Anfangs- und dem Endzustand nicht unendlich hoch ist, besteht immer eine Wahrscheinlichkeit ungleich Null, dass ein System den Übergang zwischen ihnen vollzieht.

Zur Analyse nicht-relativistischer Reaktionen genügt es, vier der Grundgesetze zu beachten, die diese Reaktionen regeln.

  1. Erhaltung der Nukleonen . Die Gesamtzahl der Nukleonen vor und nach einer Reaktion ist gleich.
  2. Ladungserhaltung . Die Summe der Ladungen aller Partikel vor und nach einer Reaktion ist gleich
  3. Impulserhaltung . Der Gesamtimpuls der wechselwirkenden Teilchen vor und nach einer Reaktion ist der gleiche.
  4. Energieeinsparung . Energie, einschließlich Ruhemassenenergie, bleibt bei Kernreaktionen erhalten.

Referenz: Lamarsh, John R. Einführung in die Nukleartechnik 2. Auflage

Energiespektrum des Beta-Zerfalls

Sowohl beim  Alpha-  als auch beim  Gamma-Zerfall weist das resultierende Teilchen ( Alpha-Teilchen  oder  Photon ) eine  enge Energieverteilung auf , da das Teilchen die Energie aus der Differenz zwischen dem Anfangs- und dem Endkernzustand trägt. Wenn beispielsweise im Fall eines Alpha-Zerfalls ein Elternkern spontan zerfällt und einen Tochterkern und ein Alpha-Teilchen ergibt, entspricht die Summe der Masse der beiden Produkte nicht ganz der Masse des ursprünglichen Kerns (siehe  Massendefekt ). . Aufgrund des Energieerhaltungsgesetzes tritt dieser Unterschied in Form der  kinetischen Energie des Alpha-Teilchens auf. Da bei jedem Abbau eines bestimmten Elternkerns dieselben Partikel als Produkte auftreten, sollte die Massendifferenz  immer gleich sein , und die kinetische Energie  der Alpha-Partikel sollte auch immer gleich sein. Mit anderen Worten, der Strahl von Alpha-Partikeln sollte  monoenergetisch sein . 

Es wurde erwartet, dass die gleichen Überlegungen für einen Elternkern gelten würden, der in einen Tochterkern und  ein Beta-Teilchen zerfällt . Da nur das Elektron und der rückprallende Tochterkern Beta-Zerfall beobachtet wurden, wurde zunächst angenommen, dass der Prozess  ein Zweikörperprozess ist , der dem Alpha-Zerfall sehr ähnlich ist. Es erscheint vernünftig anzunehmen, dass die Beta-Partikel auch einen  monoenergetischen Strahl bilden würden .

Um zu demonstrieren , Energetik von Zwei-Körper – Beta – Zerfall, betrachten den Beta – Zerfall , in der ein Elektron emittiert wird , und der Mutterkern im Ruhezustand ist ,  onservation Energie  erfordert:

Energieerhaltung-Beta-Zerfall

Da das Elektron ein viel leichteres Teilchen ist, wurde erwartet, dass es den größten Teil der freigesetzten Energie abführt , die einen einzigartigen Wert  e- haben würde .

Energiespektrum des Beta-Zerfalls
Die Form dieser Energiekurve hängt davon ab, welcher Anteil der Reaktionsenergie (Q-Wert – die durch die Reaktion freigesetzte Energiemenge) vom Elektron oder Neutrino getragen wird.

Aber die Realität sah anders aus . Das von Lise Meitner und Otto Hahn 1911 und von Jean Danysz 1913 gemessene Spektrum von Beta-Partikeln zeigte jedoch mehrere Linien auf einem diffusen Hintergrund. Darüber hinaus haben praktisch alle emittierten Beta-Partikel Energien, die unter denen liegen, die durch Energieeinsparung bei Zweikörperzerfällen vorhergesagt werden. Die beim Beta-Zerfall emittierten Elektronen  haben  eher ein kontinuierliches als ein diskretes Spektrum , was der Energieerhaltung zu widersprechen scheint, unter der damals aktuellen Annahme, dass der Beta-Zerfall die einfache Emission eines Elektrons aus einem Kern ist. Als dies zum ersten Mal beobachtet wurde,  schien es das Überleben eines der wichtigsten Naturschutzgesetze in der Physik zu gefährden !

Um diese Energiefreisetzung zu erklären,  schlug Pauli  (1931) vor, dass beim Zerfall ein weiteres Teilchen emittiert wurde  , das später von Fermi als  Neutrino bezeichnet wurde . Es war klar, dass dieses Teilchen stark durchdringen muss und dass die Erhaltung der elektrischen Ladung erfordert, dass das Neutrino elektrisch neutral ist. Dies würde erklären, warum es so schwierig war, dieses Teilchen zu erkennen. Der Begriff Neutrino kommt aus dem Italienischen und bedeutet „kleines neutrales“. Neutrinos werden mit dem griechischen Buchstaben  ν (nu) bezeichnet . Während des Beta-Zerfalls trägt das Neutrino die fehlende Energie und auch in diesem Prozess bleibt das Gesetz  der Energieerhaltung gültig .

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: [email protected] oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.