Facebook Instagram Youtube Twitter

What is Bremsstrahlung – Definition

The bremsstrahlung is electromagnetic radiation produced by the acceleration or deceleration of a charged particle when deflected by magnetic fields or another charged particle. Radiation Dosimetry

Bremsstrahlung

Bremsstrahlung
When a electron is accelerated or decelerated it emits radiation and thus loses energy and slows down. This deceleration radiation is known as bremsstrahlung.

The bremsstrahlung  is electromagnetic radiation produced by the acceleration or deceleration of a charged particle when deflected by magnetic fields (an electron by magnetic field of particle accelerator) or another charged particle (an electron by an atomic nucleus). The name bremsstrahlung comes from the German. The literal translation is ‘braking radiation’. From classical theory, when a charged particle is accelerated or decelerated, it must radiate energy.

The bremsstrahlung is one of possible interactions of light charged particles with matter (especially with high atomic numbers).

The two commonest occurrences of bremsstrahlung are by:

  • Deceleration of charged particle. When charged particles enter a material they are decelerated by the electric field of the atomic nuclei and atomic electrons.
  • Acceleration of charged particle. When ultra-relativistic charged particles move through magnetic fields they are forced to move along a curved path. Since their direction of motion is continually changing, they are also accelerating and so emit bremsstrahlung, in this case it is referred to as synchrotron radiation.
Bremsstrahlung vs. Ionization
Fractional energy loss per radiation length in lead as a
function of electron or positron energy. Source: http://pdg.lbl.gov/

Since the bremsstrahlung is much stronger for lighter particles, this effect is much more important for beta particles than for protons, alpha particles, and heavy charged nuclei (fission fragments). This effect can be neglected at particle energies below about 1 MeV, because the energy loss due to bremsstrahlung is very small. Radiation loss starts to become important only at particle energies well above the minimum ionization energy. At relativistic energies the ratio of loss rate by bremsstrahlung to loss rate by ionization is approximately proportional to the product of the particle’s kinetic energy and the atomic number of the absorber.

The cross section of bremsstrahlung depends on mostly these terms:

Bremsstrahlung cross section formula

So the ratio of stopping powers of bremsstrahlung and ionization losses is:

Bremsstrahlung to Ionization loses ratio

,where E is the particle’s (electron’s) kinetic energy, Z is the mean atomic number of the material and E’ is a proportionality constant; E’ ≈ 800 MeV. The kinetic energy at which energy loss by bremsstrahlung is equal to the energy loss by ionization and excitation (collisional losses) is called the critical energy. Another paremeter is the radiation length, defined as the distance over which the incident electron’s energy is reduced by a factor 1/e (0.37) due to radiation losses alone. Following table give some typical values:

Table of critical energies and radiation lengths

See also:

Spectrum of Beta Radiation

See also:

Beta Particle

See also:

Cherenkov Radiation

We hope, this article, Bremsstrahlung, helps you. If so, give us a like in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about radiation and dosimeters.

What is Cherenkov Radiation – Definition

The cherenkov radiation is electromagnetic radiation emitted when a charged particlemoves through a dielectric medium faster than the phase velocity of light. Radiation Dosimetry

Cherenkov Radiation

The cherenkov radiation is electromagnetic radiation emitted when a charged particle (such as an electron) moves through a dielectric medium faster than the phase velocity of light in that medium. It is similar to the bow wave produced by a boat travelling faster than the speed of water waves. Cherenkov radiation occurs only if the particle’s speed is higher than the phase velocity of light in the material. Even at high energies the energy lost by Cherenkov radiation is much less than that by the other mechanisms (collisions, bremsstrahlung). It is named after Soviet physicist Pavel Alekseyevich Cherenkov, who shared the Nobel Prize in physics in 1958 with Ilya Frank and Igor Tamm for the discovery of Cherenkov radiation, made in 1934.

cherenkov radiation
Source: hyperphysics.phy-astr.gsu.edu
Cherenkov Radiation in the reactor core.
Cherenkov Radiation in the reactor core.

Cherenkov radiation can be used to detect high-energy charged particles (especially beta particles). In nuclear reactors or in a spent nuclear fuel pool, beta particles (high-energy electrons) are released as the fission fragments decay. The glow is visible also after the chain reaction stops (in the reactor). The cherenkov radiation can characterize the remaining radioactivity of spent nuclear fuel, therefore it can be used for measuring of fuel burnup.

Cherenkov Radiation – Youtube

See also:

Bremsstrahlung

See also:

Beta Particle

See also:

Positron Interactions

We hope, this article, Cherenkov Radiation, helps you. If so, give us a like in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about radiation and dosimeters.

What is Positron Interaction – Definition

Positrons interact similarly with matter when they are energetic. At the end of their path, positrons differ significantly from electrons. Radiation Dosimetry

Positron Interactions

Pair production in chamberThe coulomb forces that constitute the major mechanism of energy loss for electrons are present for either positive or negative charge on the particle and constitute the major mechanism of energy loss also for positrons. Whatever the interaction involves a repulsive or attractive force between the incident particle and orbital electron (or atomic nucleus), the impulse and energy transfer for particles of equal mass are about the same. Therefore positrons interact similarly with matter when they are energetic. The track of positrons in material is similar to the track of electrons. Even their specific energy loss and range are about the same for equal initial energies.

At the end of their path, positrons differ significantly from electrons. When a positron (antimatter particle) comes to rest, it interacts with an electron (matter particle), resulting in the annihilation of the both particles and the complete conversion of their rest mass to pure energy (according to the E=mc2 formula) in the form of two oppositely directed 0.511 MeV gamma rays (photons).

Positron Annihilation

positron annihilation
When a positron (antimatter particle) comes to rest, it interacts with an electron, resulting in the annihilation of the both particles and the complete conversion of their rest mass to pure energy in the form of two oppositely directed 0.511 MeV photons.

Electron–positron annihilation occurs when a negatively charged electron and a positively charged positron collide.When a low-energy electron annihilates a low-energy positron (antiparticle of electron), they can only produce two or more photons (gamma rays). The production of only one photon is forbidden because of conservation of linear momentum and total energy. The production of another particle is also forbidden because of both particles (electron-positron) together do not carry enough mass-energy to produce heavier particles. When an electron and a positron collide, they annihilate resulting in the complete conversion of their rest mass to pure energy (according to the E=mc2 formula) in the form of two oppositely directed 0.511 MeV gamma rays (photons).

e + e+ → γ + γ (2x 0.511 MeV)

This process must satisfy a number of conservation laws, including:

  • Conservation of electric charge. The net charge before and after is zero.
  • Conservation of linear momentum and total energy. T
  • Conservation of angular momentum.

See also:

Cherenkov Radiation

See also:

Beta Particle

See also:

Positron Annihilation

We hope, this article, Positron Interaction, helps you. If so, give us a like in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about radiation and dosimeters.

What is Positron Annihilation – Definition

Electron–positron annihilation occurs when a negatively charged electron and a positively charged positron collide.When a low-energy electron annihilates a low-energy positron. Radiation Dosimetry

Positron Annihilation

positron annihilation
When a positron (antimatter particle) comes to rest, it interacts with an electron, resulting in the annihilation of the both particles and the complete conversion of their rest mass to pure energy in the form of two oppositely directed 0.511 MeV photons.

Electron–positron annihilation occurs when a negatively charged electron and a positively charged positron collide.When a low-energy electron annihilates a low-energy positron (antiparticle of electron), they can only produce two or more photons (gamma rays). The production of only one photon is forbidden because of conservation of linear momentum and total energy. The production of another particle is also forbidden because of both particles (electron-positron) together do not carry enough mass-energy to produce heavier particles. When an electron and a positron collide, they annihilate resulting in the complete conversion of their rest mass to pure energy (according to the E=mc2 formula) in the form of two oppositely directed 0.511 MeV gamma rays (photons).

e + e+ → γ + γ (2x 0.511 MeV)

This process must satisfy a number of conservation laws, including:

  • Conservation of electric charge. The net charge before and after is zero.
  • Conservation of linear momentum and total energy. T
  • Conservation of angular momentum.

See also:

Positron Interactions

See also:

Beta Particle

We hope, this article, Positron Annihilation, helps you. If so, give us a like in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about radiation and dosimeters.

What is Gamma Ray / Gamma Radiation – Definition

Gamma rays, also known as gamma radiation, refers to electromagnetic radiation (no rest mass, no charge) of a very high energies. Gamma rays are high-energy photons. Radiation Dosimetry

Gamma rays, also known as gamma radiation, refers to electromagnetic radiation (no rest mass, no charge) of a very high energies. Gamma rays are high-energy photons with very short wavelengths and thus very high frequency. Since the gamma rays are in substance only a very high-energy photons, they are very penetrating matter and are thus biologically hazardous. Gamma rays can travel thousands of feet in air and can easily pass through the human body.

Gamma rays are emitted by unstable nuclei in their transition from a high energy state to a lower state known as gamma decay. In most practical laboratory sources, the excited nuclear states are created in the decay of a parent radionuclide, therefore a gamma decay typically accompanies other forms of decay, such as alpha or beta decay.

Radiation and also gamma rays are all around us. In, around, and above the world we live in. It is a part of our natural world that has been here since the birth of our planet. Natural sources of gamma rays on Earth are inter alia gamma rays from naturally occurring radionuclides, particularly potassium-40.  Potasium-40 is a radioactive isotope of potassium which has a very long half-life of 1.251×109 years (comparable to the age of Earth). This isotope can be found in soil, water also in meat and bananas. This is not the only example of natural source of gamma rays.

Photon
A photon, the quantum of electromagnetic radiation,  is an elementary particle, which is the force carrier of the electromagnetic force. The modern photon concept was developed (1905) by Albert Einstein to explain of the photoelectric effect, in which he proposed the existence of discrete energy packets during the transmission of light.

Before Albert Einstein, notably the German physicist Max Planck had prepared the way for the concept by explaining that objects that emit and absorb light do so only in amounts of energy that are quantized, that means every change of energy can occur only by certain particular discrete amounts and the object cannot change energy in any arbitrary way. The concept of modern photon came into general use after the physicist Arthur H. Compton demonstrated (1923) the corpuscular nature of X-rays. This was the validation that  Einstein’s hypothesis that light itself is quantized.

The term photon comes from Greek phōtos, “light” and a photon is usually denoted by the symbol γ (gamma). The photons are also symbolized by hν (in chemistry and optical engineering), where h is Planck’s constant and the Greek letter ν (nu) is the photon’s frequency. The radiation frequency is key parameter of all photons, because it determines the energy of a photon. Photons are categorized according to the energies from low-energy radio waves and infrared radiation, through visible light, to high-energy X-rays and gamma rays.

Photons are gauge bosons for electromagnetism, having no electric charge or rest mass and one unit of spin. Common to all photons is the speed of light, the universal constant of physics. In empty space, the photon moves at c (the speed of light – 299 792 458 metres per second).

Barium-137m is a product of a common fission product - Caesium - 137. The main gamma ray of Barium-137m is 661keV photon.
Barium-137m is a product of a common fission product – Caesium – 137. The main gamma ray of Barium-137m is 661keV photon.

Discovery of Gamma Rays

Antoine Henri Becquerel
Antoine Henri Becquerel

Gamma rays were discovered shortly after discovery of X-rays. In 1896, French scientist Henri Becquerel discovered that uranium minerals could expose a photographic plate through another material. Becquerel presumed that uranium emitted some invisible light similar to X-rays, which were recently discovered by W.C.Roentgen. He called it “metallic phosphorescence”. In fact, Henri Becquerel had found gamma radiation being emitted by radioisotope 226Ra (radium), which is part of the Uranium series of uranium decay chain.
Gamma rays were first thought to be particles with mass, for example extremely energetic beta particles. This opinion failed, because this radiation cannot be deflected by a magnetic field, what indicated they had no charge. In 1914, gamma rays were observed to be reflected from crystal surfaces, proving they must be electromagnetic radiation, but with higher energy (higher frequency and shorter wavelengths).

Characteristics of Gamma Rays / Radiation

Key features of gamma rays are summarized in following few points:
  • Gamma rays are high-energy photons (about 10 000 times as much energy as the visible photons), the same photons as the photons forming the visible range of the electromagnetic spectrum – light.
  • Photons (gamma rays and X-rays) can ionize atoms directly (despite they are electrically neutral) through the Photoelectric effect and the Compton effect, but secondary (indirect) ionization is much more significant.
  • Gamma rays ionize matter primarily via indirect ionization.
  • Although a large number of possible interactions are known, there are three key interaction mechanisms  with matter.
    • Photoelectric effect
    • Compton scattering
    • Pair production
  • Gamma rays travel at the speed of light and they can travel thousands of meters in air before spending their energy.
  • Since the gamma radiation is very penetrating matter, it must be shielded by very dense materials, such as lead or uranium.
  • The distinction between X-rays and gamma rays is not so simple and has changed in recent decades.  According to the currently valid definition, X-rays are emitted by electrons outside the nucleus, while gamma rays are emitted by the nucleus.
  • Gamma rays frequently accompany the emission of alpha and beta radiation.
Image: The relative importance of various processes of gamma radiation interactions with matter.
Gamma rays attuenuation
The relative importance of various processes of gamma radiation interaction with matter.
Comparison of particles in a cloud chamber. Source: wikipedia.org
Comparison of particles in a cloud chamber. Source: wikipedia.org
Attenuation coefficients.
Total photon cross sections.
Source: Wikimedia Commons

Photoelectric Effect

 
Albert Einstein and Photoelectric Effect / Discovery
The phenomenon, that a surface (typically alkali metals) when exposed to electromagnetic radiation (visible light) emits electrons, was discovered by Hertz and Hallwachs in 1887 during experiments with a spark-gap generator. Hertz found that the sensitivity of his spark-gap device can be increased by exposition to visible or ultraviolet light and that light obviously had some electrical effect. He did not further pursue investigation of this effect.
Shortly after Hertz’s discovery in 1899, English physicist J.J.Thomson showed that UV light, which fall onto metal surface, trigger the emission of electrons from the surface. In 1902, Hungarian physicist Philipp Lenard made the first quantitative measurements of the photoelectric effect. He observed that the energy of individual emitted electrons increased with the frequency of the light (which is related to the color).
the luminiferous aether
The luminiferous aether. It was hypothesised that the Earth moves through a “medium” of aether that carries light. It has been replaced in modern physics by the theory of relativity and quantum theory.
Source: wikipedia.org

While this is interesting, it is hardly explainable by classical theory of electromagnetic radiation which assumed the existence of a stationary medium (the luminiferous aether) through which light propagated. Subsequent investigations into the photoelectric effect results in the fact that these explorations did not fit with the classical theory of electromagnetic radiation.

In 1905, Albert Einstein published four groundbreaking papers on the photoelectric effect, Brownian motion, special relativity, and the equivalence of mass and energy. These papers were published in the Annalen der Physik journal and contributed significantly to the foundation of modern physics. In the paper on the photoelectric effect (“On a Heuristic Viewpoint Concerning the Production and Transformation of Light”) he solved the paradox by describing light as composed of discrete quanta (German: das Lichtquant), rather than continuous waves.
This theory was builded on Max Planck’s blackbody radiation theory, which assumes that luminous energy can be absorbed or emitted only in discrete amounts, called quanta. The photon’s energy in each quantum of light is equal to its frequency (ν) multiplied by a constant known as Planck’s constant (h), or alternately, using the wavelength (λ) and the speed of light (c):

E=hc/λ=hν

Photoelectric effect with photons from visible spectrum on potassium plate - threshold energy - 2eV
Photoelectric effect with photons from visible spectrum on potassium plate – threshold energy – 2eV

Each photon above a threshold frequency (specific for each material) has the needed energy to eject a single electron, creating the observed effect. Einstein’s theory predicts that the maximum kinetic energy of emitted electron is dependent only on the frequency of the incident light and not on its intensity. Shining twice as much light (high-intensity) results in twice as many photons, and more electrons releasing, but the maximum kinetic energy of those individual electrons remains the same. Experimentation in the photoelectric effect was carried out extensively by Robert Millikan in 1915, Robert Millikan showed that Einstein’s prediction was correct. This discovery contributed to the quantum revolution in physics and earned Einstein the Nobel Prize in Physics in 1921.

  • The photoelectric effect dominates at low-energies of gamma rays.
  • The photoelectric effect leads to the emission of photoelectrons from matter when light (photons) shines upon them.
  • The maximum energy an electron can receive in any one interaction is .
  • Electrons are only emitted by the photoelectric effect if photon reaches or exceeds a threshold energy.
  • A free electron (e.g. from atomic cloud) cannot absorb entire energy of the incident photon. This is a result of the need to conserve both momentum and energy.
  • The cross-section for the emission of n=1 (K-shell) photoelectrons is higher than that of n=2 (L-shell) photoelectrons. This is a result of the need to conserve momentum and energy.

Definition of Photoelectric effect

In the photoelectric effect, a photon undergoes an interaction with an electron which is bound in an atom. In this interaction the incident photon completely disappears and an energetic photoelectron is ejected by the atom from one of its bound shells. The kinetic energy of the ejected photoelectron (Ee) is equal to the incident photon energy (hν) minus the binding energy of the photoelectron in its original shell (Eb).

Ee=hν-Eb

Therefore photoelectrons are only emitted by the photoelectric effect if photon reaches or exceeds a threshold energy – the binding energy of the electron – the work function of the material. For gamma rays with energies of more than hundreds keV, the photoelectron carries off the majority of the incident photon energy – hν.

Following a photoelectric interaction, an ionized absorber atom is created with a vacancy in one of its bound shells. This vacancy is will be quickly filled by an electron from a shell with a lower binding energy (other shells) or through capture of a free electron from the material. The rearrangement of electrons from other shells creates another vacancy, which, in turn, is filled by an electron from an even lower binding energy shell. Therefore a cascade of more characteristic X-rays can be also generated. The probability of characteristic x-ray emission decreases as the atomic number of the absorber decreases. Sometimes , the emission of an Auger electron occurs.

Photoelectric effect with photons from visible spectrum on potassium plate - threshold energy - 2eV
Photoelectric effect with photons from visible spectrum on potassium plate – threshold energy – 2eV
Gamma absorption by an atom. Source: laradioactivite.com/
Gamma absorption by an atom.
Source: laradioactivite.com/

Cross-Sections of Photoelectric Effect

At small values of gamma ray energy the photoelectric effect dominates. The mechanism is also enhaced for materials of high atomic number Z. It is not simple to derive analytic expression for the probability of photoelectric absorption of gamma ray per atom over all ranges of gamma ray energies. The probability of photoelectric absorption per unit mass is approximately proportional to:

τ(photoelectric) = constant x ZN/E3.5

where Z is the atomic number, the exponent n varies between 4 and 5. E is the energy of the incident photon. The proportionality to higher powers of the atomic number Z is the main reason for using of high Z materials, such as lead or depleted uranium in gamma ray shields.

Although the probability of the photoelectric absorption of gamma photon decreases, in general, with increasing photon energy, there are sharp discontinuities in the cross-section curve. These are called “absoption edges” and they correspond to the binding energies of electrons from atom’s bound shells. For photons with the energy just above the edge, the photon energy is just sufficient to undergo the photoelectric interaction with electron from  bound shell, let say K-shell. The probability of such interaction is just above this edge much greater than that of photons of energy slightly below this edge. For gamma photons below this edge the interaction with electron from K-shell in energetically impossible and therefore the probability drops abruptly. These edges occur also at binding energies of electrons from other shells (L, M, N …..).

Cross section of photoelectric effect.
Cross section of photoelectric effect.

Compton Scattering

Key characteristics of Compton Scattering

  • Compton scattering dominates at intermediate energies.
  • It is the scattering of photons by atomic electrons  
  • Photons undergo a wavelength shift called the Compton shift.
  • The energy transferred to the recoil electron can vary from zero to a large fraction of the incident gamma ray energy

Definition of Compton Scattering

Compton scattering is the inelastic or nonclassical scattering of a photon (which may be an X-ray or gamma ray photon) by a charged particle, usually an electron. In Compton scattering, the incident gamma ray photon is deflected through an angle Θ with respect to its original direction. This deflection results in a decrease in energy (decrease in photon’s frequency) of the photon and is called the Compton effect. The photon transfers a portion of its energy to the recoil electron. The energy transferred to the recoil electron can vary from zero to a large fraction of the incident gamma ray energy, because all angles of scattering are possible. The Compton scattering was observed by A. H.Compton in 1923 at Washington University in St. Louis. Compton earned the Nobel Prize in Physics in 1927 for this new understanding about the particle-nature of photons.

Compton Scattering Formula

The Compton formula was published in 1923 in the Physical Review. Compton explained that the X-ray shift is caused by particle-like momentum of photons. Compton scattering formula is the mathematical relationship between the shift in wavelength and the scattering angle of the X-rays. In the case of Compton scattering the photon of frequency f collides with an electron at rest. Upon collision, the photon bounces off electron, giving up some of its initial energy (given by Planck’s formula E=hf), While the electron gains momentum (mass x velocity), the photon cannot lower its velocity. As a result of momentum conservetion law, the photon must lower its momentum given by:

As a result of momentum conservetion law, the photon must lower its momentum given by this formula.

So the decrease in photon’s momentum must be translated into decrease in frequency (increase in wavelength Δλ = λ’ – λ). The shift of the wavelength increased with scattering angle according to the Compton formula:

The shift of the wavelength increased with scattering angle according to the Compton formula

Compton Scattering
In Compton scattering, the incident gamma-ray photon is deflected through an angle Θ with respect to its original direction. This deflection results in a decrease in energy (decrease in photon’s frequency) of the photon and is called the Compton effect.
Source: hyperphysics.phy-astr.gsu.edu

where

λ is the initial wavelength of photon

λ’ is the wavelength after scattering,

h is the Planck constant = 6.626 x 10-34 J.s

me is the electron rest mass (0.511 MeV)

c is the speed of light

Θ is the scattering angle.

The minimum change in wavelength (λ′λ) for the photon occurs when Θ = 0° (cos(Θ)=1) and is at least zero. The maximum change in wavelength (λ′λ) for the photon occurs when Θ = 180° (cos(Θ)=-1). In this case the photon transfers to the electron as much momentum as possible.The maximum change in wavelength can be derived from Compton formula:

The maximum change in wavelength can be derived from Compton formula. Compton length

The quantity h/mec is known as the Compton wavelength of the electron and is equal to 2.43×10−12 m.

Compton Scattering – Cross-Sections

The probability of Compton scattering per one interaction with an atom increases linearly with atomic number Z, because it depends on the number of electrons, which are available for scattering in the target atom. The angular distribution of photons scattered from a single free electron is described by the Klein-Nishina formula:

The angular distribution of photons scattered from a single free electron is described by the Klein-Nishina formula

where ε = E0/mec2 and r0 is the “classical radius of the electron” equal to about 2.8 x 10-13 cm. The formula gives the probability of scattering a photon into the solid angle element dΩ = 2π sin Θ dΘ when the incident energy is E0.

Compton scattering experiment
The wavelength change in such scattering depends only upon the angle of scattering for a given target particle.
Source: hyperphysics.phy-astr.gsu.edu/
compton scattering
Cross section of compton scattering of photons by atomic electrons.
Compton scattering - Angle distribution
Energies of a photon at 500 keV and an electron after Compton scattering.
Source: wikipedia.org

Compton Edge

In spectrophotometry, the Compton edge is a feature of the spectrograph that results from the Compton scattering in the scintillator or detector. This feature is due to photons that undergo Compton scattering with a scattering angle of 180° and then escape the detector. When a gamma ray scatters off the detector and escapes, only a fraction of its initial energy can be deposited in the sensitive layer of the detector. It depends on the scattering angle of the photon, how much energy will be deposited in the detector. This leads to a spectrum of energies. The Compton edge energy corresponds to full backscattered photon.

Inverse Compton Scattering

Inverse Compton scattering is the scattering of low energy photons to high energies by relativistic electrons. Relativistic electrons can boost energy of low energy photons by a potentially enormous amount (even gamma rays can be produced). This phenomenon is very important in astrophysics.

Compton edge of 60Co on gamma spectrometer Na(Tl).
Compton edge of 60Co on gamma spectrometer Na(Tl).
Inverse Compton scattering
source: venables.asu.edu

Positron-Electron Pair Production

In general, pair production is a phenomenon of nature where energy is direct converted to matter. The phenomenon of pair production can be view two different ways. One way is as a particle and antiparticle and the other is as a particle and a hole. The first way can be represented by formation of electron and positron, from a packet of electromagnetic energy (high energy photon – gamma ray) traveling through matter.  It is one of the possible ways in which gamma rays interact with matter. At high energies this interaction dominates.

In order for electron-positron pair production to occur, the electromagnetic energy of the photon must be above a threshold energy, which is equivalent to the rest mass of two electrons. The threshold energy (the total rest mass of produced particles) for electron-positron pair production is equal to 1.02MeV (2 x 0.511MeV) because the rest mass of a single electron is equivalent to 0.511MeV of energy.

If the original photon’s energy is greater than 1.02MeV, any energy above 1.02MeV is according to the conservation law split between the kinetic energy of motion of the two particles.

The presence of an electric field of a heavy atom such as lead or uranium is essential in order to satisfy conservation of momentum and energy. In order to satisfy both conservation of momentum and energy, the atomic nucleus must receive some momentum. Therefore a photon pair production in free space cannot occur.

Moreover, the positron is the anti-particle of the electron, so when a positron comes to rest, it interacts with another electron, resulting in the annihilation of the both particles and the complete conversion of their rest mass back to pure energy (according to the E=mc2 formula) in the form of two oppositely directed 0.511 MeV gamma rays (photons). The pair production phenomenon is therefore connected with creation and destruction of matter in one reaction.

Positron-Electron Pair Production – Cross-Section

The probability of pair production, characterized by cross section, is a very complicated function based on quantum mechanics. In general the cross section increases approximately with the square of atomic number p ~ Z2) and increases with photon energy, but this dependence is much more complex.

Pair production in nuclear field and electron field.
Cross section of pair production in nuclear field and electron field.

Gamma Rays Attenuation

The total cross-section of interaction of a gamma rays with an atom is equal to the sum of all three mentioned partial cross-sections:

σ = σf + σC + σ

  • σf – Photoelectric effect
  • σC – Compton scattering
  • σp – Pair production

Depending on the gamma ray energy and the absorber material, one of the three partial cross-sections may become much larger than the other two. At small values of gamma ray energy the photoelectric effect dominates. Compton scattering dominates at intermediate energies. The compton scattering also increases with decreasing atomic number of matter, therefore the interval of domination is wider for light nuclei. Finally, electron-positron pair production dominates at high energies.

Based on the definition of interaction cross-section, the dependence of gamma rays intensity on thickness of absorber material can be derive. If monoenergetic gamma rays are collimated into a narrow beam and if the detector behind the material only detects the gamma rays that passed through that material without any kind of interaction with this material, then the dependence should be simple exponential attenuation of gamma rays. Each of these interactions removes the photon from the beam either by absorbtion or by scattering away from the detector direction. Therefore the interactions can be characterized by a fixed probability of occurance per unit path length in the absorber. The sum of these probabilities is called the linear attenuation coefficient:

μ = τ(photoelectric) +  σ(Compton) + κ(pair)

Gamma rays attuenuation
The relative importance of various processes of gamma radiation interaction with matter.

Linear Attenuation Coefficient

The attenuation of gamma radiation can be then described by the following equation.

I=I0.e-μx

, where I is intensity after attenuation,  Io is incident intensity,  μ is the linear attenuation coefficient (cm-1), and physical thickness of absorber (cm).

Attenuation
Dependence of gamma radiation intensity on absorber thickness

The materials listed in the table beside are air, water and a different elements from carbon (Z=6) through to lead (Z=82) and their linear attenuation coefficients are given for three gamma ray energies. There are two main features of the linear attenuation coefficient:

  • The linear attenuation coefficient increases as the atomic number of the absorber increases.
  • The linear attenuation coefficient for all materials decreases with the energy of the gamma rays.

Half Value Layer

The half value layer expresses the thickness of absorbing material needed for reduction of the incident radiation intensity by a factor of two. There are two main features of the half value layer:

  • The half value layer decreases as the atomic number of the absorber increases. For example 35 m of air is needed to reduce the intensity of a 100 keV gamma ray beam by a factor of two whereas just 0.12 mm of lead can do the same thing.
  • The half value layer for all materials increases with the energy of the gamma rays. For example from 0.26 cm for iron at 100 keV to about 1.06 cm at 500 keV.

Mass Attenuation Coefficient

When characterizing an absorbing material, we can use sometimes the mass attenuation coefficient.  The mass attenuation coefficient is defined as the ratio of the linear attenuation coefficient and absorber density (μ/ρ). The attenuation of gamma radiation can be then described by the following equation:

I=I0.e-(μ/ρ).ρl

, where ρ is the material density, (μ/ρ) is the mass attenuation coefficient and ρ.l is the mass thickness. The measurement unit used for the mass attenuation coefficient cm2g-1.

For intermediate energies the Compton scattering dominates and different absorbers have approximately equal mass attenuation coefficients. This is due to the fact that cross section of Compton scattering is proportional to the Z (atomic number) and therefore the coefficient is proportional to the material density ρ. At small values of gamma ray energy or at high values of gamma ray energy, where the coefficient is proportional to higher powers of the atomic number Z (for photoelectric effect σf ~ Z5; for pair production σp ~ Z2), the attenuation coefficient μ is not a constant.

Example:

How much water schielding do you require, if you want to reduce the intensity of a 500 keV monoenergetic gamma ray beam (narrow beam) to 1% of its incident intensity? The half value layer for 500 keV gamma rays in water is 7.15 cm and the linear attenuation coefficient for 500 keV gamma rays in water is 0.097 cm-1.

The question is quite simple and can be described by following equation:

I(x)=frac{I_{0}}{100},;; when; x =?

If the half value layer for water is 7.15 cm, the linear attenuation coefficient is:

mu=frac{ln2}{7.15}=0.097cm^{-1}

Now we can use the exponential attenuation equation:

I(x)=I_0;exp;(-mu x)

frac{I_0}{100}=I_0;exp;(-0.097 x)

therefore

frac{1}{100}=;exp;(-0.097 x)

lnfrac{1}{100}=-ln;100=-0.097 x

x=frac{ln100}{{0.097}}=47.47;cm

So the required thickness of water is about 47.5 cm.  This is relatively large thickness and it is caused by small atomic numbers of hydrogen and oxygen. If we calculate the same problem for lead (Pb), we obtain the thickness x=2.8cm.

Linear Attenuation Coefficients

Table of Linear Attenuation Coefficients (in cm-1) for a different materials at gamma ray energies of 100, 200 and 500 keV.

Absorber 100 keV 200 keV 500 keV
Air   0.000195/cm   0.000159/cm   0.000112/cm
Water 0.167/cm 0.136/cm 0.097/cm
Carbon 0.335/cm 0.274/cm 0.196/cm
Aluminium 0.435/cm 0.324/cm 0.227/cm
Iron 2.72/cm 1.09/cm 0.655/cm
Copper 3.8/cm 1.309/cm 0.73/cm
Lead 59.7/cm 10.15/cm 1.64/cm

Read more

What is Discovery of Gamma Rays / Radiation – Definition

Gamma rays were discovered shortly after discovery of X-rays. In 1896, French scientist Henri Becquerel discovered that uranium minerals could expose a photographic plate through another material. Radiation Dosimetry

Discovery of Gamma Rays

Antoine Henri Becquerel
Antoine Henri Becquerel

Gamma rays were discovered shortly after discovery of X-rays. In 1896, French scientist Henri Becquerel discovered that uranium minerals could expose a photographic plate through another material. Becquerel presumed that uranium emitted some invisible light similar to X-rays, which were recently discovered by W.C.Roentgen. He called it “metallic phosphorescence”. In fact, Henri Becquerel had found gamma radiation being emitted by radioisotope 226Ra (radium), which is part of the Uranium series of uranium decay chain.Gamma rays were first thought to be particles with mass, for example extremely energetic beta particles. This opinion failed, because this radiation cannot be deflected by a magnetic field, what indicated they had no charge. In 1914, gamma rays were observed to be reflected from crystal surfaces, proving they must be electromagnetic radiation, but with higher energy (higher frequency and shorter wavelengths).

See also:

Description of Gamma Rays

See also:

Gamma Ray

See also:

Characteristics of Gamma Rays

We hope, this article, Discovery of Gamma Rays / Radiation, helps you. If so, give us a like in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about radiation and dosimeters.

What is Description of Gamma Ray – Definition

Gamma rays, also known as gamma radiation, refers to electromagnetic radiation (no rest mass, no charge) of a very high energies. Definition of Gamma rays. Radiation Dosimetry
Gamma rays, also known as gamma radiation, refers to electromagnetic radiation (no rest mass, no charge) of a very high energies. Gamma rays are high-energy photons with very short wavelengths and thus very high frequency. Since the gamma rays are in substance only a very high-energy photons, they are very penetrating matter and are thus biologically hazardous. Gamma rays can travel thousands of feet in air and can easily pass through the human body.Gamma rays are emitted by unstable nuclei in their transition from a high energy state to a lower state known as gamma decay. In most practical laboratory sources, the excited nuclear states are created in the decay of a parent radionuclide, therefore a gamma decay typically accompanies other forms of decay, such as alpha or beta decay.Radiation and also gamma rays are all around us. In, around, and above the world we live in. It is a part of our natural world that has been here since the birth of our planet. Natural sources of gamma rays on Earth are inter alia gamma rays from naturally occurring radionuclides, particularly potassium-40.  Potasium-40 is a radioactive isotope of potassium which has a very long half-life of 1.251×109 years (comparable to the age of Earth). This isotope can be found in soil, water also in meat and bananas. This is not the only example of natural source of gamma rays.
Photon
A photon, the quantum of electromagnetic radiation,  is an elementary particle, which is the force carrier of the electromagnetic force. The modern photon concept was developed (1905) by Albert Einstein to explain of the photoelectric effect, in which he proposed the existence of discrete energy packets during the transmission of light.Before Albert Einstein, notably the German physicist Max Planck had prepared the way for the concept by explaining that objects that emit and absorb light do so only in amounts of energy that are quantized, that means every change of energy can occur only by certain particular discrete amounts and the object cannot change energy in any arbitrary way. The concept of modern photon came into general use after the physicist Arthur H. Compton demonstrated (1923) the corpuscular nature of X-rays. This was the validation that  Einstein’s hypothesis that light itself is quantized.The term photon comes from Greek phōtos, “light” and a photon is usually denoted by the symbol γ (gamma). The photons are also symbolized by hν (in chemistry and optical engineering), where h is Planck’s constant and the Greek letter ν (nu) is the photon’s frequency. The radiation frequency is key parameter of all photons, because it determines the energy of a photon. Photons are categorized according to the energies from low-energy radio waves and infrared radiation, through visible light, to high-energy X-rays and gamma rays.Photons are gauge bosons for electromagnetism, having no electric charge or rest mass and one unit of spin. Common to all photons is the speed of light, the universal constant of physics. In empty space, the photon moves at c (the speed of light – 299 792 458 metres per second).
[/su_accordion]
Barium-137m is a product of a common fission product - Caesium - 137. The main gamma ray of Barium-137m is 661keV photon.
Barium-137m is a product of a common fission product – Caesium – 137. The main gamma ray of Barium-137m is 661keV photon.

See above:See also:

Gamma Ray  

See also:

Discovery of Gamma Rays

We hope, this article, Description of Gamma Ray, helps you. If so, give us a like in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about radiation and dosimeters.

What is Characteristics of Gamma Rays / Radiation – Definition

Gamma rays are electromagnetic radiation. Key features of gamma rays are summarized in following few points. Characteristics of Gamma Rays. Radiation Dosimetry

Characteristics of Gamma Rays / Radiation

Key features of gamma rays are summarized in following few points:
  • Gamma rays are high-energy photons (about 10 000 times as much energy as the visible photons),
  • The same photons as the photons forming the visible range of the electromagnetic spectrum – light.
  • Photons (gamma rays and X-rays) can ionize atoms directly (despite they are electrically neutral) through the Photoelectric effect and the Compton effect, but secondary (indirect) ionization is much more significant.
  • Gamma rays ionize matter primarily via indirect ionization.
  • Although a large number of possible interactions are known, there are three key interaction mechanisms  with matter.
  • Gamma rays travel at the speed of light and they can travel thousands of meters in air before spending their energy.
  • Since the gamma radiation is very penetrating matter, it must be shielded by very dense materials, such as lead or uranium.
  • The distinction between X-rays and gamma rays is not so simple and has changed in recent decades.  According to the currently valid definition, X-rays are emitted by electrons outside the nucleus, while gamma rays are emitted by the nucleus.
  • Gamma rays frequently accompany the emission of alpha and beta radiation.
Comparison of particles in a cloud chamber. Source: wikipedia.org
Comparison of particles in a cloud chamber. Source: wikipedia.org
Attenuation coefficients.
Total photon cross sections.
Source: Wikimedia Commons
 
Image: The relative importance of various processes of gamma radiation interactions with matter.
Gamma rays attuenuation
The relative importance of various processes of gamma radiation interaction with matter.
Basic Principles of Shielding of Gamma Rays
radiation protection pronciples - time, distance, shielding
Principles of Radiation Protection – Time, Distance, Shielding

See also: Shielding of Gamma Rays

See also:

Discovery of Gamma Rays

See also:

Gamma Ray

See also:

Photoelectric Effect

We hope, this article, Characteristics of Gamma Rays / Radiation, helps you. If so, give us a like in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about radiation and dosimeters.

What is Gamma Dosimetry – Gamma Dosimeter – Definition

Gamma dosimetry is the measurement, calculation and assessment of the absorbed doses and assigning those doses to individuals. Radiation Dosimetry

Gamma dosimetry is the measurement, calculation and assessment of the absorbed doses and assigning those doses to individuals. It is the science and practice that attempts to quantitatively relate specific measures made in a radiation field to chemical and/or biological changes that the radiation would produce in a target.

Since there are two types of radiation exposure, external and internal exposure, dosimetry may be also categorized as:

  • External Dosimetry.  External exposure is radiation that comes from outside our body and interacts with us. In this case, we analyze predominantly exposure from gamma rays and beta particles, since alpha particles, in general, constitute no external exposure hazard because the particles generally do not pass through skin. Since photons and beta interact through electromagnetic forces and neutrons interact through nuclear forces, their detection methods and dosimetry are substantially different. The source of radiation can be, for example, a piece of equipment that produces the radiation like a container with a radioactive materials, or like an x-ray machine. External dosimetry is based on measurements with a dosimeter, or inferred from measurements made by other radiological protection instruments.
  • Internal Dosimetry. If the source of radiation is inside our body, we say, it is internal exposure. The intake of radioactive material can occur through various pathways such as ingestion of radioactive contamination in food or liquids. Protection from internal exposure is more complicated. Most radionuclides will give you much more radiation dose if they can somehow enter your body, than they would if they remained outside. Internal dosimetry assessment relies on a variety of monitoring, bio-assay or radiation imaging techniques.

Studies have shown that alpha and neutron radiation cause greater biological damage for a given energy deposition per kg of tissue than gamma radiation does. It was discovered, biological effects of any radiation increases with the linear energy transfer (LET). In short, the biological damage from high-LET radiation (alpha particlesprotons or neutrons) is much greater than that from low-LET radiation (gamma rays). This is because the living tissue can more easily repair damage from radiation that is spread over a large area than that which is concentrated in a small area. Because more biological damage is caused for the same physical dose (i.e., the same energy deposited per unit mass of tissue), one gray of alpha or neutron radiation is more harmful than one gray of gamma radiation. This fact that radiations of different types (and energies) give different biological effects for the same absorbed dose is described in terms of factors known as the relative biological effectiveness (RBE) and the radiation weighting factor (wR).

Radiation Weighting Factors – ICRP

For photon and electron radiation, the radiation weighting factor has the value 1 independently of the energy of the radiation and for alpha radiation the value 20. For neutron radiation, the value is energy-dependent and amounts to 5 to 20.

Radiation weighting factors
Source: ICRP, 2003. Relative Biological Effectiveness (RBE), Quality Factor (Q), and Radiation Weighting Factor (wR). ICRP Publication 92. Ann. ICRP 33 (4).

In 2007 ICRP published a new set of radiation weighting factors(ICRP Publ. 103: The 2007 Recommendations of the International Commission on Radiological Protection). These factors are given below.

Radiation weighting factors - current - ICRP
Source: ICRP Publ. 103: The 2007 Recommendations of the International Commission on Radiological Protection

As shown in the table, a wR of 1 is for all low-LET radiations, i.e. X-rays and gamma rays of all energies as well as electrons and muons. A smooth curve, considered an approximation, was fitted to the wRvalues as a function of incident neutron energy. Note that En is the neutron energy in MeV.

radiation weighting factor - neutrons - ICRP
The radiation weighting factor wR for neutrons introduced in Publication 60 (ICRP, 1991) as a discontinuous function of the neutron energy(- – -) and the proposed modification (—).

Thus for example, an absorbed dose of 1 Gy by alpha particles will lead to an equivalent dose of 20 Sv, and an equivalent dose of radiation is estimated to have the same biological effect as an equal amount of absorbed dose of gamma rays, which is given a weighting factor of 1.

Detectors of Gamma Radiation

Detectors may be also categorized according to sensitive materials and methods that can be utilized to make a measurement:

Detection of Gamma Radiation using Ionization Chamber

ionization chamber - basic principle

Gamma rays have very little trouble in penetrating the metal walls of the chamber. Therefore, ionization chambers may be used to detect gamma radiation and X-rays collectively known as photons, and for this the windowless tube is used. Ionization chambers have a good uniform response to radiation over a wide range of energies and are the preferred means of measuring high levels of gamma radiation. Some problems are caused by the fact, that alpha particles are more ionising than beta particles and than gamma rays, so more current is produced in the ionization chamber region by alpha than beta and gamma. Gamma rays deposit significantly lower amount of energy to the detector than other particles.

The efficiency of the chamber can be further increased by the use of a high pressure gas. Typically a pressure of 8-10 atmospheres can be used, and various noble gases are employed. For example, high-pressure xenon (HPXe) ionization chambers are ideal for use in uncontrolled environments, as a detector’s response has been shown to be uniform over large temperature ranges (20–170°C). The higher pressure results in a greater gas density and thereby a greater chance of collision with the fill gas and ion-pair creation by incident gamma radiation. Because of the increased wall thickness required to withstand this high pressure, only gamma radiation can be detected. These detectors are used in survey meters and for environmental monitoring.

Detection of Gamma Radiation using Geiger Counter

Detector of Ionizing Radiation - Geiger Tube
Detector of Ionizing Radiation – Geiger Tube

Geiger counter can detect ionizing radiation such as alpha and beta particlesneutrons, and gamma rays using the ionization effect produced in a Geiger–Müller tube, which gives its name to the instrument. The voltage of detector is adjusted so that the conditions correspond to the Geiger-Mueller region.

The high amplification factor of the Geiger counter is the major advantage over the ionization chamber. Geiger counter is therefore a much more sensitive device than other chambers. It is often used in the detection of low-level gamma rays and beta particles for this reason.

 

Detection of Gamma Radiation using Scintillation Counter

 

Scintillation_Counter - Photomultiplier Tube
Apparatus with a scintillating crystal, photomultiplier, and data acquisition components. Source: wikipedia.org License CC BY-SA 3.0

Scintillation counters are used to measure radiation in a variety of applications including hand held radiation survey meters, personnel and environmental monitoring for radioactive contamination, medical imaging, radiometric assay, nuclear security and nuclear plant safety. They are widely used because they can be made inexpensively yet with good efficiency, and can measure both the intensity and the energy of incident radiation.

Scintillation counters can be used to detect alphabetagamma radiation. They can be used also for detection of neutrons. For these purposes, different scintillators are used.

  • Gamma RaysHigh-Z materials are best suited as scintillators for the detection of gamma rays. The most widely used scintillation material is NaI(Tl) (thallium-doped sodium iodide). The iodine provides most of the stopping power in sodium iodide (since it has a high Z = 53). These crystalline scintillators are characterized by high density, high atomic number, and pulse decay times of approximately 1 microsecond (~ 10-6 sec). Scintillation in inorganic crystals is typically slower than in organic ones. They exhibit high efficiency for detection of gamma rays and are capable of handling high count rates. Inorganic crystals can be cut to small sizes and arranged in an array configuration so as to provide position sensitivity. This feature is widely used in medical imaging to detect X-rays or gamma rays. Inorganic scintillators are better at detecting gamma rays and X-rays. This is due to their high density and atomic number which gives a high electron density.

Detection of Gamma Radiation using Semiconductors – HPGe Detectors

HPGe Detector - Germanium
HPGe detector with LN2 cryostat Source: canberra.com

High-purity germanium detectors (HPGe detectors) are the best solution for precise gamma and x-ray spectroscopy.

As was written, the study and analysis of gamma ray spectra for scientific and technical use is called gamma spectroscopy, and gamma ray spectrometers are the instruments which observe and collect such data. A gamma ray spectrometer (GRS) is a sophisticated device for measuring the energy distribution of gamma radiation. For the measurement of gamma rays above several hundred keV, there are two detector categories of major importance, inorganic scintillators as NaI(Tl) and semiconductor detectors. If a perfect energy resolution is required, we have to use germanium-based detector, such as the HPGe detector. Germanium-based semiconductor detectors are most commonly used where a very good energy resolution is required, especially for gamma spectroscopy, as well as x-ray spectroscopy. In gamma spectroscopy, germanium is preferred due to its atomic number being much higher than silicon and which increases the probability of gamma ray interaction. Moreover, germanium has lower average energy necessary to create an electron-hole pair, which is 3.6 eV for silicon and 2.9 eV for germanium. This also provides the latter a better resolution in energy. The FWHM (full width at half maximum) for germanium detectors is a function of energy. For a 1.3 MeV photon, the FWHM is 2.1 keV, which is very low.

EPD – Electronic Personal Dosimeter

EPD - Electronic Personal Dosimeters
EPD – Electronic Personal Dosimeters with Si chip

An electronic personal dosimeter is modern dosimeter, which can give a continuous readout of cumulative dose and current dose rate, and can warn the person wearing it when a specified dose rate or a cumulative dose is exceeded. EPDs are especially useful in high dose areas where residence time of the wearer is limited due to dose constraints.

Characteristics of EPDs

The electronic personal dosimeter, EPD, is able to display a direct reading of the detected dose or dose rate in real time. Electronic dosimeters may be used as a supplemental dosimeter as well a primary dosimeter. The passive dosimeters and the electronic personal dosimeters are often used together to complement each other. To estimate effective doses, dosimeters must be worn on a position of the body representative of its exposure, typically between the waist and the neck, on the front of the torso, facing the radioactive source. Dosimeters are usually worn on the outside of clothing, around the chest or torso to represent dose to the “whole body”. Dosimeters may also be worn on the extremities or near the eye to measure equivalent dose to these tissues.

The dosimeter can be reset, usually after taking a reading for record purposes, and thereby re-used multiple times. The EPDs have a top mounted display to make them easy to read when they are clipped to your breast pocket. The digital display gives both dose and dose rateinformation usually in mSv and mSv/h. The EPD has a dose rate alarm, and a dose alarm. These alarms are programmable. Different alarms can be set for different activities.

For example:

  • dose rate alarm at 100 μSv/h,
  • dose alarm: 100 μSv.

If an alarm set point is reached, the relevant display flashes along with a red light, and quite a piercing noise is generated. You can clear the dose rate alarm by retreating to a lower radiation field, but you cannot clear the dose alarm until you get to a EPD reader. EPDs can also give a bleep for every 1 or 10 μSv they register. This gives you an audible indication of the radiation fields. Some EPDs have wireless communication capabilities. EPDs are capable of measuring a wide radiation dose range from routine (μSv) levels to emergency levels (hundreds mSv or units of Sieverts) with high precision, and may display the exposure rate as well as accumulated exposure values. Of the dosimeter technologies, electronic personal dosimeters are generally the most expensive, largest in size, and the most versatile.

References:

Radiation Protection:

  1. Knoll, Glenn F., Radiation Detection and Measurement 4th Edition, Wiley, 8/2010. ISBN-13: 978-0470131480.
  2. Stabin, Michael G., Radiation Protection and Dosimetry: An Introduction to Health Physics, Springer, 10/2010. ISBN-13: 978-1441923912.
  3. Martin, James E., Physics for Radiation Protection 3rd Edition, Wiley-VCH, 4/2013. ISBN-13: 978-3527411764.
  4. U.S.NRC, NUCLEAR REACTOR CONCEPTS
  5. U.S. Department of Energy, Instrumantation and Control. DOE Fundamentals Handbook, Volume 2 of 2. June 1992.

Nuclear and Reactor Physics:

  1. J. R. Lamarsh, Introduction to Nuclear Reactor Theory, 2nd ed., Addison-Wesley, Reading, MA (1983).
  2. J. R. Lamarsh, A. J. Baratta, Introduction to Nuclear Engineering, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001, ISBN: 0- 471-39127-1.
  4. Glasstone, Sesonske. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4th edition, 1994, ISBN: 978-0412985317
  5. W.S.C. Williams. Nuclear and Particle Physics. Clarendon Press; 1 edition, 1991, ISBN: 978-0198520467
  6. G.R.Keepin. Physics of Nuclear Kinetics. Addison-Wesley Pub. Co; 1st edition, 1965
  7. Robert Reed Burn, Introduction to Nuclear Reactor Operation, 1988.
  8. U.S. Department of Energy, Nuclear Physics and Reactor Theory. DOE Fundamentals Handbook, Volume 1 and 2. January 1993.
  9. Paul Reuss, Neutron Physics. EDP Sciences, 2008. ISBN: 978-2759800414.

See also:

Personal Dosimetry

We hope, this article, Gamma Dosimetry – Gamma Dosimeter, helps you. If so, give us a like in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about radiation and dosimeters.

What is Interaction of Heavy Charged Particles with Matter – Definition

Heavy charged particles are all energetic ions with mass of one atomic mass unit or greater. Knowledge of their interaction with matter must be well known. Radiation Dosimetry
Heavy charged particles are all energetic ions with mass of one atomic mass unit or greater, such as protons, alpha particles (helium nuclei) or fission fragments. Especially knowledge of the interaction of fission fragments and alpha particles must be well known in the engineering of nuclear reactors.

Description of Alpha Particles

Alpha Particle - Interaction with MatterAlpha particles are energetic nuclei of helium. The production of alpha particles is termed alpha decay. Alpha particles consist of two protons and two neutrons bound together into a particle identical to a helium nucleus. Alpha particles are relatively large and carry a double positive charge. They are not very penetrating and a piece of paper can stop them. They travel only a few centimeters but deposit all their energies along their short paths. In nuclear reactors they are produced for example in the fuel (alpha decay of heavy nuclei). Alpha particles are commonly emitted by all of the heavy radioactive nuclei occuring in the nature (uranium, thorium or radium), as well as the transuranic elements (neptunium, plutonium or americium). Especially energetic alpha particles (except artificially accelerated helium nuclei) are produced in a nuclear process, which is known as a ternary fission. In this process, the nucleus of uranium is splitted into three charged particles (fission fragments) instead of the normal two. The smallest of the fission fragments most probably (90% probability) being an extra energetic alpha particle.

Fission fragment yields
Fission fragment yield for different nuclei. The most probable fragment masses are around mass 95 (Krypton) and 137 (Barium).

Description of Fission Fragments

Nuclear fission fragments are the fragments left after a nucleus fissions. Typically, when uranium 235 nucleus undergoes fission, the nucleus splits into two smaller nuclei, along with a few neutrons and release of energy in the form of heat (kinetic energy of the these fission fragments) and gamma rays. The average of the fragment mass is about 118, but very few fragments near that average are found. It is much more probable to break up into unequal fragments, and the most probable fragment masses are around mass 95 (Krypton) and 137 (Barium).

Most of these fission fragments are highly unstable (radioactive) and undergo further radioactive decays to stabilize itself. Fission fragments interact strongly with the surrounding atoms or molecules traveling at high speed, causing them to ionize.

Energy from Uranium Fission
Energy from Uranium Fission

Most of energy released by one fission (~160MeV of total ~200MeV) appears as kinetic energy of the fission fragments.

Nature of Interaction of Charged Particles with Matter

Since the electromagnetic interaction extends over some distance, it is not necessary for the light or heavy charged particle to make a direct collision with an atom. They can transfer energy simply by passing close by. Heavy charged particles, such as fission fragments or alpha particles interact with matter primarily through coulomb forces between their positive charge and the negative charge of the electrons from atomic orbitals. On the other hand, the internal energy of an atom is quantised, therefore only certain amount of energy can be transferred. In general, charged particles transfer energy mostly by:

  • Excitation. The charged particle can transfer energy to the atom, raising electrons to a higher energy levels.
  • Ionization. Ionization can occur, when the charged particle have enough energy to remove an electron. This results in a creation of ion pairs in surrounding matter.
Fission Fragments
Fission fragments after a nucleus fission. Fission fragments interact strongly with the surrounding atoms or molecules traveling at high speed, causing them to ionize.

Creation of pairs requires energy, which is lost from the kinetic energy of the charged particle causing it to decelerate. The positive ions and free electrons created by the passage of the charged particle will then reunite, releasing energy in the form of heat (e.g. vibrational energy or rotational energy of atoms). This is the principle how fission fragments heat up fuel in the reactor core. There are considerable differences in the ways of energy loss and scattering between the passage of light charged particles such as positrons and electrons and heavy charged particles such as fission fragments, alpha particles, muons. Most of these differences are based on the different dynamics of the collision process. In general, when a heavy particle collides with a much lighter particle (electrons in the atomic orbitals), the laws of energy and momentum conservation predict that only a small fraction of the massive particle’s energy can be transferred to the less massive particle. The actual amount of transferred energy depends on how closely the charged particles passes through the atom and it depends also on restrictions from quantisation of energy levels.

The distance required to bring the particle to rest is referred to as its range. The range of fission fragments in solids amounts to only a few microns, and thus most of the energy of fission is converted to heat very close to the point of fission. In case of gases the range increases to a few centimeters in dependence of gas parameters (density, type of gas etc.)  The trajectory of heavy charged particles are not greatly affected, because they interacts with light atomic electrons. Other charged particles, such as the alpha particles behave similarly with one exception – for lighter charged particles the ranges are somewhat longer.

Stopping Power – Bethe Formula

A convenient variable that describes the ionization properties of surrounding medium is the stopping power. The linear stopping power of material is defined as the ratio of the differential energy loss for the particle within the material to the corresponding differential path length:stopping_power_formula

,where T is the kinetic energy of the charged particle, nion is the number of electron-ion pairs formed per unit path length, and I denotes the average energy needed to ionize an atom in the medium. For charged particles, S increases as the particle velocity decreases. The classical expression that describes the specific energy loss is known as the Bethe  formula. The non-relativistic formula was found by Hans Bethe in 1930. The relativistic version (see below) was found also by  Hans Bethe in 1932.

stopping_power_formula_2

In this expression, m is the rest mass of the electron, β equals to v/c, what expresses the particle’s velocity relative to the speed of light, γ is the Lorentz factor of the particle, Q equals to its charge, Z is the atomic number of the medium and n is the atoms density in the volume. For nonrelativistic particles (heavy charged particles are mostly nonrelativistic), dT/dx is dependent on 1/v2. This is can be explained by the greater time the charged particle spends in the negative field of the electron, when the velocity is low.

The stopping power of most materials is very high for heavy charged particles and these particles have very short ranges. For example, the range of a 5 MeV alpha particle is approximately only 0,002 cm in aluminium alloy. Most alpha particles can be stopped by an ordinary sheet of paper or living tissue. Therefore the shielding of alpha particles does not pose a difficult problem, but on the other hand alpha radioactive nuclides can lead to serious health hazards when they are ingested or inhaled (internal contamination).

Specifics of Fission Fragments

The fission fragments three two key features (somewhat different from alpha particles or protons), which influence their energy loss during its travel through matter.

  • High initial energy. Results in a large effective charge.
  • Large effective charge. The fission fragments start out with lack of many electrons, therefore their specific loss is greater than alpha’s specific loss, for example.
  •  Immediate electron pickup. Results in changes of (-dE/dx) during the travel.

These features results  in the continuous decrease in the effective charge carried by the fission fragment as the fragment comes to rest and continuous decrease in -dE/dx. The resulting decrease in -dE/dx (from the electron pickup) is larger than the increase that accompanies a reduction in velocity. The range of typical fission fragment can be approximately half that of a 5 MeV alpha particle.

Bragg Curve

Bragg Curve
Bragg Curve is typical for heavy charged particles and plots the energy loss during its travel through matter.
Source: wikipedia.org

The Bragg curve is typical for heavy charged particles and describes energy loss of ionizing radiation during travel through matter. For this curve is typical the Bragg peak, which is the result of 1/v2 dependency of the stopping power. This peak occurs because the cross section of interaction increases immediately before the particle come to rest. For most of the track, the charge remains unchanged and the specific energy loss increases according to the 1/v2. Near the end of the track, the charge can be reduced through electron pickup and the curve can fall off.

The Bragg curve also differs somewhat due to the effect of straggling. For a given material the range will be the nearly the same for all particles of the same kind with the same initial energy. Because the details of the microscopic interactions undergone by any specific particle vary randomly, a small variation in the range can be observed. This variation is called straggling and it is caused by the statistical nature of the energy loss process which consists of a large number of individual collisions.

This phenomenon, which is described by the Bragg curve, is exploited in particle therapy of cancer, because this allows to concentrate the stopping energy on the tumor while minimizing the effect on the surrounding healthy tissue.

See also:

Interaction of Radiation with Matter

See also:

Interaction of Beta Radiation with Matter

We hope, this article, Interaction of Heavy Charged Particles with Matter, helps you. If so, give us a like in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about radiation and dosimeters.